BÀI 1 Cho a,b thuộc N*:
2016x a^2+ a= 2017x b^2+ b
CMR: a-b=d với (a,b)=d; d khác 1
BÀI 2 Gọi BE và CF là đường cao của tam giác ABC. CM: tam giác ABC cân tại A khi và chỉ khi AB+BE= AC+CF
Giải hai bài toán này hộ mình nha mn ^^
Tính giá trị biểu thức :
a, N = \(x^6-2017x^5+2017x^4-2017x^3+2017x^2-2017x+2025\)
tại x = 2016
b, Q = \(2017x^{2016}+2016x^{2015}+2015x^{2014}+...+3x^2+2x+1\)
tại x = ( -1 )
a/ Với \(x=2016\Rightarrow2017=x+1\)
\(A=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+2025\)
\(A=x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+2025\)
\(A=2025-x=9\)
b/ Với \(x=-1\Rightarrow\left\{{}\begin{matrix}x^{2k}=1\\x^{2k+1}=-1\end{matrix}\right.\) ta có:
\(Q=2017-2016+2015-2014+...+3-2+1\)
\(Q=1+1+1+...+1+1\) (có \(\frac{2016}{2}+1=1009\) số 1)
\(Q=1009\)
Bài 1 cho a, b,c,d thuộc N* thỏa mãn a^2+b^2=C^2+d^2
chứng minh : a+b+c+d là hợp số
mọi người giúp mình với!
Xét \(\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)\)
\(=a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\)
Vì a là số nguyên dương nên a, (a–1) là hai số tự nhiên liên tiếp
⇒a−1⋮2
Tương tự ta có \(b\left(b-1\right);c\left(c-1\right);d\left(d-1\right)\) đều chia hết cho 2
=> \(a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\) là số chẵn
Lại có \(a^2+b^2=c^2+d^2\)\(\Rightarrow a^2+b^2+c^2+d^2=2\left(c^2+d^2\right)\)là số chẵn.
Do đó \(a+b+c+d\) là số chẵn mà \(a+b+c+d>2\) (Do \(a,b,c,d\in\) N*)
⇒ \(a+b+c+d\) là hợp số
Tick nha kkk 😘
Cho P = a2 + a. Với a thuộc N
a) Hãy viết P thành tích
b) Với a thuộc N, CMR P chia hết cho 2 ( hoặc P là số chẵn )
c) Với a thuộc N, CMR a2 + 2017a chia hết cho 2
d) Cho M = a2 + b2 + c2 + d2 + a + b + c + d. Với a, b, c, d thuộc N. CMR M chia hết cho 2
e) Cho N = a2 + b2 + c2 + d2 + a + b + c + d và a + b + c + d 20162017. Với a, b, c, d thuộc N. CMR N chia hết cho 2
Trong các câu sau câu nào cho ta 3 số tự nhiên liên tiếp tăng dần
a+1,a+2 với a thuộc N
b+2,b+1 với b thuộc N
c-1,c+2 với c thuộc N
d+1,d-1 với d thuộc N
Ba số nào sau đây là ba số tự nhiên liên tiếp tăng dần :
A ) c , c + 1 , c + 3 với b thuộc N ; C ) b - 1 , b , b + 1 với b thuộc N
B ) a , a + 1 , a + 2 với a thuộc N ; D ) d + 1 , d , d + 1 với d thuộc N
B vì C khả quan nhưng b-1 phải thuộc N mà 0-1=-1 không thuôc N
bài 1 Tìm số phần tử của mỗi tập hợp:
a,A={1000;1001;...;2006} b,B={x E N/x chia hết cho 2 ,x < hoặc = 100}
c,C={x E N/x chia hết cho 2 dư 1,x <100 d,D={1975;1977;1979;...;2007}
bài 2Tính tổng của :Các số 2;5;8;11;296.
Bài 3: Cho các đường thẳng m,n và các điểm A,B,C,D.
a, Hãy vẽ hình nếu A thuộc m, A thuộc n,B ko thuộc n,C ko thuộc m,D thuộc m,D ko thuộc n, các điểm B,C,D ko thẳng hàng.
b,Tìm 1 điểm E sao cho A,D,E thẳng hàng và B,C,E ko thẳng hàng.
Tập hợp A có: (2006-1000)+1=1007 phần tử
Tập hợp B có: (100-2):2+1=52 phần tử
1, tìm x,y biết :
a,x/3=y/2 và x.y=54
b,tìm x biết :
A= [x-2]^2 * [x+1] * [ x-4] < 0
c,tìm x biết:
/x+2/ - x =2
2, tìm x thuộc Z
C=[ 2016x+1]/2017x-2017 có giá trị lớn nhất
Bài 1:tìm n thuộc Z để
a. n-4 chia hết cho n-1
b. n+5 chia hết cho n-2
c.2n+1 chia hết cho n-5
d. 3n-a chia hết cho n-2
Bài 2 tìm x, y thuộc Z
a,( x+3)x ( y+2) = 1
b. ( 2x -5)x (y-6)=17
c. ( x-1)x(x+y)=33
Bài 3:cho biết a-b chia hết cho 6
chứng minh
a. a+5bchia hết cho b
b. a+17b chia hết cho 6
c. a-13b chia hết cho 6
Bài 4. chứng minh với a thuộc Z
a. M= a(a+2)-a(a-5)-7 la bội của 7
b. N= (a-2) (a+3)-(a-3)(a+2)là 2 số chẵn
Bài 1 :CMR : a, (a-b)+(c-d)-(a-c)=-(b+d)
b (a-b)-(c-d)+(b+c)=a+d
Bài 2 : CMR 2n + 1 và 2n + 3 ( n thuộc N ) là số nguyên tố cùng nhau
giúp mk nha mk cần rất gấp ai nhanh nhất và đúng mk sẽ cho 3 tick nhanh nha
Bài 1 :
\(a,\left(a-b\right)+\left(c-d\right)-\left(a-c\right)=-\left(b+d\right)\)
Ta có : \(VT=\left(a-b\right)+\left(c-d\right)-\left(a-c\right)\)
\(=a-b+c-d-a+c\)
\(=-\left(b+d\right)=VP\)
\(\Rightarrow\left(a-b\right)+\left(c-d\right)-\left(a-c\right)=-\left(b+d\right)\)
\(b,\left(a-b\right)-\left(c-d\right)+\left(b+c\right)=a+d\)
Ta có : \(VT=\left(a-b\right)-\left(c-d\right)+\left(b+c\right)\)
\(=a-b-c+d+b+c\)
\(=a+d=VP\)
\(\Rightarrow\left(a-b\right)-\left(c-d\right)+\left(b+c\right)=a+d\)