cho a/b= c/d (b,c,d khac 0; c-2d khac 0) CMR :(a-2b)^4/(c-2d)^4=a^4+2017b^4/c^4+2017d^4
cho a/b=c/d khac 1 va a,b,c,d khac 0. chung minh (a-b)^2/(c-d)^2=ab/cd
cho a/b = b/c = c/d = d/a va a + b + c + d khac 0. CMR: a= b= c= d.
Ta có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
\(\Rightarrow\frac{a}{b}=1\Rightarrow a=b\)
\(\Rightarrow\frac{c}{d}=1\Rightarrow c=d\)
\(\Rightarrow\frac{b}{c}=1\Rightarrow b=c\)
Vậy a=b=c=d
cho tỉ lệ thức \(\dfrac{a}{b}\)chung minh \(\dfrac{a}{a-b}=\dfrac{a}{c-d}\)(giả thiet a khac b ,c khac d va a,b,c khac 0
Thiếu nhé:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\)
\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\)
Ta có điều phải chứng minh
chung minh rang tu ti le thuc a/b=c/d (a-b khac 0,c-d khac 0) ta co the suy ra ti le thuc a+b/a-b=c+d/c-d
Cho 4 so a,b,c,d khac 0 thoa man;b^2=ac,c^2=bd,b^3+c^3+d^3 khac 0
CMR;a^3+b^3+c^3/b^3+c^3+d^3=a/d
chung minh rang tu ti le thuc a/b=c/d (a-b khac 0,c-d khac 0) ta co the suy ra ti le thuc a+b/a-b=c+d/c
ai giai nhanh va dung cho toi hieu toi se tich nguoi do
cho a = b + c va c = b + d / b - d ( b ; d khac 0 )
c/m : a / b = c / d
cho a/b=c/d khac 1 va c khac 0
CMR:
a)((a.b)/(c.d))^2=(a.b)/(c-d)
b)((a.b/c.d))^3=((a^3-b^3)/(a^3-d^3))
Cho a/b=b/c=c/d=d/a,(a+b+c+d khac 0)
Tinh M=2019a-2018b/a+b=2018c-2017d/c+d