cho một số tự nhiên a;b;c biết b:=1/5 a;c1/18 a và biết a chia cho c dư 21. Tìm số tự nhiên a?
Tìm số tự nhiên a nhỏ nhất sao cho khi chia a cho 3/5 và chia a cho 1 3/7 ta đều được kết quả là một số tự nhiên. Số tự nhiên a là ...
Cho một số tự nhiên a khi nhân với 2 phân số 5/12 và 10/21 thì đều được một số tự nhiên. Tìm số tự nhiên đó
a là bcnn(12,21)=84
mình làm ở violympic rồi
một số tự nhiên a chia cho 9 dư 5 , nếu trừ số tự nhiên a đó đi 5 thì số tự nhiên a có chía hết cho 9 không ?giải thích vì sao
Số tự nhiên a chia 9 dư 5 nên a = 9k + 5 (k là số tự nhiên)
Ta có :
a - 5 = 9k + 5 - 5 = 9k luôn chia hết cho 9
Vậy a- 5 chia hết cho 9
1.Trong ba số tự nhiên liên tiếp , có một số chia hết cho 3
2.Khi chia số tự nhiên a cho 24 , ta được số dư là 10 . Hỏi số a có chia hết cho 2
không ? có chia hết cho 4 không?
3. Chứng tỏ rằng:
a)Tống của ba số tự nhiên liên tiếp là một số chia hết cho 3
b)Tổng của bốn số tự nhiên liên tiếp là một số không chia hết cho 4
1/
Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2
+ Nếu \(n⋮3\) Bài toán đã được c/m
+ Nếu n chia 3 dư 1 => \(n+2⋮3\)
+ Nếu n chia 3 dư 2 => \(n+1⋮3\)
Vậy trong 3 số tự nhiên liên tiếp bao giờ cũng có 1 số chia hết cho 3
2/ \(a-10⋮24\) => a-10 đồng thời chia hết cho 3 và 8 vì 3 và 8 nguyên tố cùng nhau
\(\Rightarrow a-10=8k\Rightarrow a=8k+10⋮2\)
\(a=8k+10=8k+8+2=8\left(k+1\right)+2=2.4.\left(k+1\right)+2\)
\(2.4.\left(k+1\right)⋮4\) => a không chia hết cho 4
3/
a/ Gọi 3 số TN liên tiếp là n; n+1; n+2
\(\Rightarrow n+n+1+n+2=3n+3=3\left(n+1\right)⋮3\)
b/ Gọi 4 số TN liên tiếp là n; n+1; n+2; n+3
\(\Rightarrow n+n+1+n+2+n+3=4n+6=4n+4+2=4\left(n+1\right)+2\)
Ta có \(4\left(n+1\right)⋮4\) => tổng 4 số TN liên tiếp không chia hết cho 4
chứng tỏ rằng :
a) tổng của ba số tự nhiên liên tiếp là một số chia hết cho 3
b) tổng của bốn số tự nhiên liên tiếp là một số không chia hết cho 4
c) tích của hai số tự nhiên liên tiếp thì chia hết cho 2
d) tích của ba số tự nhiên liên tiếp luôn chia hết cho 3
cứu mình
a, Gọi 3 số tự nhiên liên tiếp là n; n+1 và n+2
Tổng chúng: n+(n+1)+(n+2)= 3n+3\(⋮\) 3 \(\forall n\in N\) (đpcm)
b, Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3
Tổng chúng: \(n+\left(n+1\right)+\left(n+2\right)+\left(n+3\right)=4n+6⋮̸4\forall n\in N\left(Vì:4n⋮4;6⋮̸4\right)\left(đpcm\right)\)
c, Hai số tự nhiên liên tiếp là k và k+1
Tích chúng: k(k+1) . Nếu k chẵn thì k+1 lẻ => Tích chẵn, chia hết cho 2
Nếu k lẻ thì k+1 chẵn => Tích chẵn, chia hết cho 2
(ĐPCM)
d, Ba số tự nhiên liên tiếp là m;m+1 và m+2
Tích chúng: m(m+1)(m+2)
+) TH1: Nếu m chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH2: Nếu m chia 3 dư 1 => m+2 chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH3: Nếu m chia 3 dư 2 => m+1 chia hết cho 3 => Tích 3 số chia hết cho 3
=> Kết luận: Tích 3 số tự nhiên liên tiếp chia hết cho 3 (đpcm)
a: Gọi ba số liên tiếp là a;a+1;a+2
a+a+1+a+2=3a+3=3(a+1) chia hết cho 3
b: Gọi 4 số liên tiếp là a;a+1;a+2;a+3
a+a+1+a+2+a+3
=4a+6
=4a+4+2
=4(a+1)+2 ko chia hết cho 4
c: Hai số liên tiếp thì luôn có 1 số chẵn, 1 số lẻ
=>Hai số liên tiếp khi nhân với nhau sẽ chia hết cho 2
d: Ba số liên tiếp thì chắc chắn sẽ có 1 số chia hết cho 3
=>Ba số liên tiếp khi nhân với nhau sẽ chia hết cho 3
Chứng tỏ rằng :
a) Trong hai số tự nhiên liên tiếp có một số chia hết cho 2
b) Trong ba số tự nhiên liên tiếp có một số chia hết cho 3
c) Tổng của bốn số tự nhiên liên tiếp là một số không chia hết cho 4
d) Tổng của ba số tự nhiên lien tiếp là một số chia hết cho ba
a; hai số tự nhiên liên tiếp có dạng: n; n + 1
Nếu n \(⋮\) 2 vậy trong hai số tự nhiên liên tiếp có một số chia hết cho 2
Nếu n = 2k + 1 thì n + 1 = 2k + 1 + 1 = 2k + (1 + 1) = 2k + 2 ⋮ 2
Từ những lập luận trên ta có hai số tự nhiên liên tiếp luôn có một số chia hết cho hai
b; Ba số tự nhiên liên tiếp có dạng: n; n + 1; n + 2
Nếu n ⋮ 3 thì trong ba số tự nhiên liên tiếp luôn có một số chia hết cho 3
Nếu n : 3 dư 1 hoặc 2 thì n có dạng: m = 3k + 1 hoặc n = 3k + 2
Trường hợp n = 3k + 1
khi đó n + 2 = 3k + 1 + 2 = 3k + (1 + 2) = 3k + 3 ⋮ 3
Trường hợp n = 3k + 2 thì n + 1 = 3k + 1 + 2 = 3k + (2 + 1) = 3k + 3
Từ những lập luận trên ta có:
Trong ba số tự nhiên liên tiếp luôn có một số chia hết cho 3
c; Bốn số tự nhiên liên tiếp có dạng:
n; n + 1; n + 2; n + 3
Khi đó tổng của bốn số tự nhiên liên tiếp là:
n + n + 1 + n + 2 + n + 3
= (n + n + n + n) + (1+ 2 + 3)
= 4n + (3+ 3)
= 4n + 6
= 4(n + 1) + 2 mà 2 không chia hết cho 4
Vậy tổng của bốn số tự nhiên liên tiếp không chia hết cho 4
Bài 7. Chứng tỏ rằng :
a) Trong hai số tự nhiên liên tiếp, có một số chia hết cho 2 ;
b) Trong ba số tự nhiên liên tiếp, có một số chia hết cho 3 ;
c) Trong bốn số tự nhiên liên tiếp, có một số chia hết cho 4.
a: Vì trong hai số tự nhiên liên tiếp chắc chắn sẽ có một số chẵn nên trong hai số tự nhiên liên tiếp, sẽ có một số chia hết cho 2
Từ tập hợp A={1;2;3;4;5;6}. có bao nhiêu cách lập một số tự nhiên gồm 6 chữ số khác nhau có tính chất: a. Số tự nhiên lẻ. b. Số tự nhiên chẵn. c. Số tự nhiên chia hết cho 5 d. Số tự nhiên không bắt đầu bởi 123
cho a một số tự nhiên lẻ, b là một số tự nhiên. Chứng minh rằng số a và ab +4 nguyên tố cùng nhau.
a và ab+4 NTCN
gọi d là ƯCLN(a;ab+4) (điêu kiện gì đó thêm vào nghen)
=>a chia het cho d và ab+4 chia hết cho d
=>ab chia hết cho d và ab+4 chia hết cho d
=>(ab+4)-(ab) chia hết cho d
=>4 chia hết cho d
=>d={1;2;4}
d khác 4;2 vì nếu d là 4;2 thì a là lẻ => không chia hết cho 2;4
=> d=1
=>a và ab+4 NTCN
cho like nếu đúng nghen
gọi d là ƯCLN(a;ab+4) (điêu kiện gì đó thêm vào nghen)
=>a chia het cho d và ab+4 chia hết cho d
=>ab chia hết cho d và ab+4 chia hết cho d
=>(ab+4)-(ab) chia hết cho d
=>4 chia hết cho d
=>d={1;2;4}
d khác 4;2 vì nếu d là 4;2 thì a là lẻ => không chia hết cho 2;4
=> d=1
=>a và ab+4 NTCN
chc\úc bn hok tốt @_@
gỉa sử a và ab+4 cùng chia hết cho 1 số tự nhiên d (d khác 0)
suy ra ab chia hết cho d suy ra (ab+4)-ab=4 chia hết cho d
suy ra d=1;2;4
a ko chia hết cho 2;4 do a lẻ
suy ra d=1
KL:..........
1 khi chia số tự nhiên a cho 24 ta được số dư là 10 hỏi số a có chia hết cho 2 không có chia hết cho 4 không
2 chứng tỏ rằng
trong hai số tự nhiên liên tiếp có một số chia hết cho 2
trong một số tự nhiên liên tiếp có một số chia hết cho 3
1) Gọi thương của a khi chia cho 24 là: x
Ta có:\(a=24x+10=2\left(12x+5\right)\)\(⋮\)\(2\)
=> a chi hết cho 2
\(a=24x+10\)
Nhận thấy: \(24x\)\(⋮\)\(4\)nhưng \(10\)không chia hết cho \(4\)
=> a không chia hết cho \(4\)
2)
a) Gọi 2 số tự nhiên liên tiếp là: \(a;\)\(a+1\)
nếu: \(a=2k\)thì \(a⋮2\)
nếu: \(a=2k+1\)thì: \(a+1=2k+1+1=2k+2\)\(⋮\)\(2\)
Vậy trong 2 số tự nhiên liên tiếp luôn tồn tại 1 số chhia hết cho 2
b) ktra lại đề
Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N )
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3