Cho \(a,b,c\) là các số lẻ. Chứng minh rằng:
\(ƯCLN\left(a;b;c\right)=ƯCLN\left(\frac{a+b}{2};\frac{b+c}{2};\frac{c+a}{2}\right)\)
\(Cho\)a , b , c là các số lẻ . Chứng minh rằng :
\(ƯCLN\left(a,b,c\right)=\left(\frac{a+b}{2},\frac{b+c}{2},\frac{c+a}{2}\right)\)
Cho a b, là số tự nhiên lẻ, b thuộc N . Chứng minh rằng ƯCLN(a ,ab+ 128) =1
Gọi d=ƯCLN(a,ab+128)d=ƯCLN(a,ab+128)
⇒{a⋮dab+128⋮d⇒128⋮d
⇒d∈{1;2;4;8;16;32;64;128}
Mà a,b lẻ nên d lẻ
Do đó d=1(đpcm)
cho mik sửa lại, cái nãy lỗi:
Gọi d=ƯCLN(a,ab+128)
⇒⎧⎨⎩a⋮dab+128⋮d⇒128⋮d⇒d∈{1;2;4;8;16;32;64;128}
Mà a,b lẻ nên d lẻ
Do đó d=1(đpcm)
Chứng minh rằng nếu a;b;c;d là các số lẻ thì thì:
ƯCLN (\(\dfrac{a+b}{2};\dfrac{b+c}{2};\dfrac{c+a}{2}\)) = ƯCLN (a;b;c)
Gọi d là ƯCLN(\(\dfrac{a+b}{2};\dfrac{b+c}{2};\dfrac{c+a}{2}\))(\(d\ne0,d⋮2\))
Ta có:\(\dfrac{a+b}{2}⋮d,\dfrac{b+c}{2}⋮d,\dfrac{c+a}{2}⋮d\)
\(\Rightarrow\dfrac{a+b}{2}+\dfrac{b+c}{2}+\dfrac{c+a}{2}⋮d\)
\(\Rightarrow\dfrac{a+b+b+c+c+a}{2}⋮d\)
\(\Rightarrow a+b+c⋮d\)
\(\Rightarrow a,b,c⋮d\)
\(\Rightarrow\)ƯCLN(a,b,c)=ƯCLN(\(\dfrac{a+b}{2};\dfrac{b+c}{2};\dfrac{c+a}{2}\))
P/S không chắc đâu nhất là 2 bước cuối
Cho hai số tự nhiên a và b ( a>b)
A) Chứng minh rằng nếu a chia hết cho b thì ( a,b)=b
B) Chứng minh rằng nếu a không chia hết cho b thì ƯCLN của hai số bằng ƯCLN của số nhỏ và số dưtrong phép chia số lớn cho số nhỏ
c)Dùng các nhận xét trên để tìm ƯCLN(72,56)
Giải:a) mọi ước chung của a và b hiển nhiên là ước của b . Đảo lại, do a chia hết cho b nen b là ước của a và b . Vậy ( a,b)=b
B) Gọi r là số dư trong phép chia a cho b ( a>b). . Ta có a=bk+r(k thuộc N) cần chứng minh rằng ( a, b) = (b,r). Thật vậy ,nếu a và b Cùng chia hết cho d thì r chia hết cho d, do đó ước chung của a và b cũng là ước chung của d và r(1) . Đảo lại nếu nếu b và r cùng chia hết cho d thì a chia hết cho d, do đó ước chung của d và r cũng là ước chung của a và b(2) . Từ (1) và(2) suy ra tập hợp các ước chung của a và b và tập hợp các ước chung của d và r bằng nhau . Do đó hai số lớn nhất trong hai tập hợp bằng nhau, tức là (a,b)=(b,r).
C)72 chia 56 dư 16 nên (72,56)=(56,16)
56 chia 16 dư8 nên ( 56,16)=(16,8)
Mà 16 chia hết cho 8 nên (16,8)=8
Các bạn ơi mình làm đúng 100% k mình nha kẻo mình tốn công viết
Cho hai số tự nhiên a và b (a > b).
a) Chứng minh rằng nếu a chia hết cho b thì ( a, b) =b.
b) Chứng minh rằng nếu a không chia hết cho b thì ƯCLN của 2 số bằng ƯCLN của số nhỏ và số dư trong phép chia số lớn cho số nhỏ.
c) Dùng các nhận xét để tìm ƯCLN (72,56).
Cho hai số tự nhiên a và b ( a > b ).
a) Chứng minh rằng nếu a chia hết cho b thì ( a, b ) = b
b) Chứng minh rằng nếu a không chia hết cho b thì ƯCLN của hai số bằng ƯCLN của số nhỏ và số dư trong phép chia số lớn cho số nhỏ.
c) Dùng các nhận xét trên để tìm ƯCLN ( 72, 56 ).
1. Tìm số tự nhiên nhỏ hơn 1000 biết khi chia nó cho 3,5,7,11 ta được các số dư lần lượt là 1,2,3,9 .
2. Tìm tất cả các cặp số nguyên dương a, b biết rằng 7a = 11b và ƯCLN(a,b) = 45
3. Chứng minh rằng với a,b,c là các số nguyên khác 0 ta luôn có:
\(BCNN\left(a,b,c\right)=\frac{\text{Ư}CLN\left(a,b,c\right).BCNN\left(a,b\right).\text{Ư}CLN\left(b,c\right).\text{Ư}CLN\left(c,a\right)}{abc}\)
Cho a,b,c là các số tự nhiên lẻ. Chứng minh rằng :
(a,b) = (a+b/2,b+c/2,a+c/2)
cho x,y,z là các số nguyên dương và x +y+z là số lẻ, các số thực a,b,c thỏa mãn (a-b)/x=(b-c)/y= (a-c)/z chứng minh rằng a= b= c
Cho x,y,z là các số nguyên tố khác 2 và các số thực a,b,c thỏa mãn dãy tỉ số bằng nhau a-b/x=b-c/y=a-c/z.CMR a=b=c
Dễ thế mà chẳng ai làm được..