cho \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\) với \(a,b,c,d\ne0;c\ne\pm d\).Chứng minh rằng \(\frac{a}{b}=\frac{c}{d}\)hoặc\(\frac{a}{b}=\frac{d}{c}\)
Cho \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\) với \(a,b,c,d\ne0\). Chứng minh rằng hoặc \(\frac{a}{b}=\frac{c}{d}\)hoặc \(\frac{a}{b}=\frac{d}{c}\)
cho \(\frac{a^2+b^2}{c^2+d^2}\)=\(\frac{ab}{cd}\)với a,b,c,d\(\ne0;c\ne+-d\)
CMR\(\frac{a}{b}=\frac{c}{d}hay\frac{a}{b}=\frac{d}{c}\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2+2ab}{c^2+d^2+2cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\left(\frac{a+b}{c+d}\right)^2\left(1\right)\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2-2ab}{c^2+d^2-2cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\left(\frac{a-b}{c-d}\right)^2\left(2\right)\)
Từ ( 1 ) và ( 2 ) suy ra : \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{a-b}{c-d}\right)^2\)
xét 2 TH :
TH1 : \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2a}{2c}=\frac{a}{c}\left(3\right)\)
\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{2b}{2d}=\frac{b}{d}\left(4\right)\)
Từ ( 3 ) và ( 4 ) suy ra : \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\)
TH2 : \(\frac{a+b}{c+d}=\frac{b-a}{c-d}=\frac{\left(a+b\right)+\left(b-a\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{2b}{2c}=\frac{b}{c}\left(5\right)\)
\(\frac{a+b}{c+d}=\frac{b-a}{c-d}=\frac{\left(a+b\right)-\left(b-a\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2a}{2d}=\frac{a}{d}\left(6\right)\)
Từ ( 5 ) và ( 6 ) suy ra : \(\frac{b}{c}=\frac{a}{d}\Rightarrow\frac{a}{b}=\frac{d}{c}\)
Từ hai trường hợp trên , nếu \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)thì \(\frac{a}{b}=\frac{c}{d}\text{ hay }\frac{a}{b}=\frac{d}{c}\)
ta có \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\left(a,b,c,d\ne0;c\ne\pm d\right)\)
\(\Rightarrow\)cd(a2+b2)=ab(c2+d2)\(\Rightarrow\)a2cd+b2cd=abc2+abd2
\(\Rightarrow\)a2cd-abc2=abd2-b2cd \(\Rightarrow\)ac(ad-bc)=bd(ad-bc)
\(\Rightarrow\)(ad-bc) (ac-bd)=0\(\Rightarrow\orbr{\begin{cases}ad-bc=0\\ac-bd=0\end{cases}}\Rightarrow\orbr{\begin{cases}ad=bc\\ac=bd\end{cases}}\Rightarrow\orbr{\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}}\)(DPCM)
M.N ui, OLM hiện nay đang bị lỗi rồi T-T, điển hình như các lỗi sau :
- Vào bạn bè thì không thấy ai đang onl cả nhưng sự thật là rất nhiều người online
- Phần thông báo mặc dù đã xem rồi nhưng thông báo vẫn hiện
- Vào trang cá nhân thì chỉ có hình bông hoa
- Câu hỏi thì không trả lời được, không hiện ra dấu gạch để ghi
Mong Admin mau sửa lỗi để cho A.E hài lòng, ngoài ra cũng không làm mất uy tín của OLM
Cho \(\frac{a}{b}=\frac{c}{d}\left(a-b\ne0;c-d\ne0\right)\)
Chứng minh : a) \(\frac{a}{3a+b}=\frac{c}{3c+d}\)
b) \(\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\)
a) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{b}{a}=\frac{d}{c}\)
\(\Rightarrow3+\frac{b}{a}=3+\frac{d}{c}\Rightarrow\frac{3a+b}{a}=\frac{3c+d}{c}\)
\(\Rightarrow\frac{a}{3a+b}=\frac{c}{3c+d}\)
b) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Đặt \(\frac{a}{c}=\frac{b}{d}=k\Rightarrow\hept{\begin{cases}a=ck\\b=dk\end{cases}}\)
\(\Rightarrow\frac{a^2-b^2}{c^2-d^2}=\frac{\left(ck\right)^2-\left(dk\right)^2}{c^2-d^2}=k^2\)
và \(\frac{ab}{cd}=\frac{ck.dk}{cd}=k^2\)
Vậy \(\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\left(đpcm\right)\)
Cho \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\) với \(a,b,c,d\ne0\) và \(c\ne d\).
CMR: \(\frac{a}{b}=\frac{c}{d}\) hoặc \(\frac{a}{b}=\frac{d}{c}\)
Ta có \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
\(\Leftrightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{2ab}{2cd}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{2ab}{2cd}=\frac{a^2+2ab+b^2}{c^2+2cd+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\left(1\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{2ab}{2cd}=\frac{a^2-2ab+b^2}{c^2-2cd+d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\left(2\right)\)
Từ điều (1) và (2)
\(\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
\(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\left(a+b\right)\left(c-d\right)=\left(a-b\right)\left(c+d\right)\)
\(\Rightarrow c\left(a+b\right)-d\left(a+b\right)=c\left(a-b\right)+d\left(a-b\right)\)
\(\Rightarrow ac+bc-ad-bd=ac-bc+ad-bd\)
\(\Rightarrow bc-ad=-bc+ad\)
\(\Rightarrow2bc=2ad\)
\(\Rightarrow bc=ad\)
\(\Rightarrow\left[\begin{matrix}\frac{a}{b}=\frac{c}{d}\\\frac{b}{a}=\frac{d}{c}\end{matrix}\right.\) ( đpcm )
đề sai phải là CMR \(\frac{a}{b}=\frac{c}{d}\) hoặc \(\frac{b}{a}=\frac{d}{c}\)
cho tỉ lệ thức \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)với a,b,c,d \(\ne0\), \(c\ne-d\)
CMR : \(\frac{a}{b}=\frac{c}{d}\)hoặc \(\frac{a}{b}=\frac{d}{c}\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
\(\Rightarrow\left(a^2+b^2\right)cd=ab\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2cd+b^2cd=abc^2+abd^2\)
\(\Leftrightarrow ac\left(ad-bc\right)-bd\left(ad-bc\right)=0\)
\(\Leftrightarrow\left(ac-bd\right)\left(ad-bc\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}ac=bd\\ad=bc\end{cases}}\Rightarrow\orbr{\begin{cases}\frac{a}{b}=\frac{d}{c}\\\frac{a}{b}=\frac{c}{d}\end{cases}}\).
cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\ne\pm1\) và \(c\ne0\). chứng minh \(\left(\frac{a-b}{c-d}\right)^2=\frac{ab}{cd}\)
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a}{c}.\frac{a}{c}=\frac{b}{d}.\frac{b}{d}=\frac{ab}{cd}=\left(\frac{a-b}{c-d}\right)^2\)
\(\Leftrightarrow\frac{ab}{cd}=\left(\frac{a-b}{c-d}\right)^2\)
đpcm
Cho \(\frac{a}{b}=\frac{c}{d}\left(\ne1,-1\right)\)và \(c\ne0\):
Chứng minh rằng:
\(\left(\frac{a-b}{c-d}\right)^2=\frac{ab}{cd}\)
\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)
đặt: \(\frac{a}{c}=\frac{b}{d}=t\) Áp dụng Tính chất dãy tỉ số bằng nhau:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=t\Leftrightarrow\left(\frac{a-b}{c-d}\right)^2=t^2\)
\(\frac{a}{c}=\frac{b}{d}=t\Leftrightarrow\frac{ab}{cd}=t^2\)
\(\Rightarrowđpcm\)
Bài 1\(Cho:\frac{a}{b}=\frac{c}{d}chứngminh:\frac{ab}{Cd}=\frac{a^2-b^2}{c^{2-d^2}}Và:\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
bÀi 2:\(biết:\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}với:a,b,e,dkhác0.chứngminh:\frac{a}{b}=\frac{c}{d}HOẶC:\frac{a}{b}=-\frac{d}{e}\)
Cho \(\frac{a}{b}=\frac{c}{d}\)\(\ne\)và \(c\ne0\). Chứng minh rằng
a)\(\left(\frac{a-b}{c-d^{ }}\right)^2=\frac{ab}{cd}\)
b)\(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3-b^3}{c^3-d^3}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(=>\hept{\begin{cases}a=b.k\\c=d.k\end{cases}}\)
\(\left(\frac{a-b}{c-d}\right)^2=\left(\frac{b.k-b}{d.k-d}\right)^2=\left(\frac{b.\left(k-1\right)}{d.\left(k-1\right)}\right)^2\)\(=\frac{\left(b^2.\left(k-1\right)^2\right)}{\left(d^2.\left(k-1\right)^2\right)}=\frac{b^2.\left(k-1\right)^2}{d^2.\left(k-1\right)^2}=\frac{b^2}{d^2}\)\(\left(1\right)\)
\(\frac{ab}{cd}=\frac{b.k.b}{d.k.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2) => \(\left(\frac{a-b}{c-d}\right)^2=\frac{ab}{cd}\)
Đặt \(\frac{a}{b}\)= \(\frac{c}{d}\)= k => a= bk ; c = dk
\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\) = \(\frac{\left(bk-b\right)^2}{\left(dk-d\right)^2}\)= \(\frac{b^2.\left(k-1\right)^2}{d^2.\left(k-1\right)^2}\)= \(\frac{b^2}{d^2}\) (1)
\(\frac{ab}{cd}\)= \(\frac{bk.b}{dk.d}\)= \(\frac{b^2}{d^2}\) (2)
Từ (1) và (2) ->> \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\) = \(\frac{ab}{cd}\)