Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Song Tử

cho \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\) với \(a,b,c,d\ne0;c\ne\pm d\).Chứng minh rằng \(\frac{a}{b}=\frac{c}{d}\)hoặc\(\frac{a}{b}=\frac{d}{c}\)

To Kill A Mockingbird
30 tháng 10 2017 lúc 20:47

Ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

\(\Leftrightarrow\left(a^2+b^2\right)\cdot cd=\left(c^2+d^2\right)\cdot ab\)

\(\Rightarrow a^2\cdot cd+b^2\cdot cd=c^2\cdot ab+d^2\cdot ab\)

\(\Rightarrow a^2\cdot cd+b^2\cdot cd-c^2\cdot ab-d^2\cdot ab=0\)

\(\Rightarrow\left(a^2\cdot cd-c^2\cdot ab\right)+\left(b^2\cdot cd-d^2\cdot ab\right)=0\)

\(\Rightarrow ac\cdot\left(ad-bc\right)+bd\cdot\left(bc-ad\right)=0\)

\(\Rightarrow ac\cdot\left(ad-bc\right)-bd\cdot\left(ad-bc\right)=0\)

\(\Rightarrow\left(ac-bd\right)\cdot\left(ad-bc\right)=0\)

Tự làm tiếp nhé.......

Trần Song Tử
30 tháng 10 2017 lúc 20:50

bạn ơi còn cách nào ko

Nguyễn Tiến Đạt
4 tháng 1 2018 lúc 19:47

ta có \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\left(a,b,c,d\ne0;c\ne\pm d\right)\)

\(\Rightarrow\)cd(a2+b2)=ab(c2+d2)\(\Rightarrow\)a2cd+b2cd=abc2+abd2

\(\Rightarrow\)a2cd-abc2=abd2-b2cd \(\Rightarrow\)ac(ad-bc)=bd(ad-bc)

\(\Rightarrow\)(ad-bc) (ac-bd)=0\(\Rightarrow\orbr{\begin{cases}ad-bc=0\\ac-bd=0\end{cases}}\Rightarrow\orbr{\begin{cases}ad=bc\\ac=bd\end{cases}}\Rightarrow\orbr{\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}}\)(DPCM)

phạm đặng trà my
13 tháng 10 2018 lúc 18:28

khó quá tôi chỉ học tới lớp 4 làm sao giải được . Xin lỗi rất nhiều .


Các câu hỏi tương tự
satoshi-gekkouga
Xem chi tiết
Thái Viết Nam
Xem chi tiết
Nguyễn Tiến Đạt
Xem chi tiết
Thu Mai
Xem chi tiết
Nguyên bảo ngọc
Xem chi tiết
yêu húa
Xem chi tiết
Đăng nhập cũng khổ
Xem chi tiết
Trần Song Tử
Xem chi tiết
Đinh Tuấn Việt
Xem chi tiết