Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Katty

Cho \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\) với \(a,b,c,d\ne0\) và \(c\ne d\).

CMR: \(\frac{a}{b}=\frac{c}{d}\) hoặc \(\frac{a}{b}=\frac{d}{c}\)

Trần Hải An
7 tháng 8 2016 lúc 21:23

- Giống giống hằng đẳng thức nhỉ??

Kuro Kazuya
25 tháng 1 2017 lúc 19:34

Ta có \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

\(\Leftrightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{2ab}{2cd}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{2ab}{2cd}=\frac{a^2+2ab+b^2}{c^2+2cd+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\left(1\right)\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{2ab}{2cd}=\frac{a^2-2ab+b^2}{c^2-2cd+d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\left(2\right)\)

Từ điều (1) và (2)

\(\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

\(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(\Rightarrow\left(a+b\right)\left(c-d\right)=\left(a-b\right)\left(c+d\right)\)

\(\Rightarrow c\left(a+b\right)-d\left(a+b\right)=c\left(a-b\right)+d\left(a-b\right)\)

\(\Rightarrow ac+bc-ad-bd=ac-bc+ad-bd\)

\(\Rightarrow bc-ad=-bc+ad\)

\(\Rightarrow2bc=2ad\)

\(\Rightarrow bc=ad\)

\(\Rightarrow\left[\begin{matrix}\frac{a}{b}=\frac{c}{d}\\\frac{b}{a}=\frac{d}{c}\end{matrix}\right.\) ( đpcm )

đề sai phải là CMR \(\frac{a}{b}=\frac{c}{d}\) hoặc \(\frac{b}{a}=\frac{d}{c}\)


Các câu hỏi tương tự
Nguyễn Thị Chi
Xem chi tiết
Vương Hàn
Xem chi tiết
Lê Nguyễn Minh Hằng
Xem chi tiết
Hiền lê
Xem chi tiết
Đỗ Thuỳ Linh
Xem chi tiết
Bình Nguyễn Ngọc
Xem chi tiết
StopBitch
Xem chi tiết
Shiine Kokomi
Xem chi tiết
Diệp Thiên Giai
Xem chi tiết