Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn  kiều thanh
Xem chi tiết
Đức Lộc
24 tháng 8 2019 lúc 19:50

Xét \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\)

\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)}\)

\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\left(\frac{a+b+c}{abc}\right)}\)

\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}|\)

\(\Rightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}|\)(đpcm)

Ngịch ngợm
Xem chi tiết
Hoàng Lê Bảo Ngọc
26 tháng 10 2016 lúc 22:46

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{abc}\left(a+b+c\right)=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

Từ đó suy ra đpcm

Võ Trương Anh Thư
Xem chi tiết
Đặng Ngọc Quỳnh
23 tháng 11 2020 lúc 5:01

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(\Leftrightarrow abc.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0\Leftrightarrow\hept{\begin{cases}bc=-\left(ab+ac\right)\\ab=-\left(bc+ac\right)\\ac=-\left(bc+ab\right)\end{cases}}\)

Ta có: \(a^2+2bc=a^2+bc+bc=a^2+bc+\left(-ab-ac\right)=\left(a-b\right)\left(a-c\right)\)

Tương tự \(b^2+2ac=\left(b-a\right)\left(b-c\right);c^2+2ab=\left(c-a\right)\left(c-b\right)\)

\(\Leftrightarrow N=\frac{bc}{\left(a-b\right)\left(a-c\right)}+\frac{ac}{\left(b-a\right)\left(b-c\right)}+\frac{ab}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{ab\left(a-b\right)+c^2\left(a-b\right)-c\left(a^2-b^2\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\frac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=1\)

Khách vãng lai đã xóa
Võ Trương Anh Thư
Xem chi tiết
thu
Xem chi tiết
nguyễn thị huyền anh
24 tháng 6 2018 lúc 16:06

bài này có trong câu hỏi tương tự nhé bạn

ST
24 tháng 6 2018 lúc 20:52

Ta có:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(\Leftrightarrow\frac{ab+bc+ac}{abc}=0\)

\(\Leftrightarrow ab+bc+ac=0\Rightarrow\hept{\begin{cases}ab=-bc-ac\\bc=-ac-ab\\ac=-ab-bc\end{cases}}\)(*)

Thay (*) vào M ta được:

\(M=\frac{1}{a^2+bc-ab-ac}+\frac{1}{b^2+ac-ab-bc}+\frac{1}{c^2+ab-bc-ac}\)

\(=\frac{1}{a\left(a-b\right)-c\left(a-b\right)}+\frac{1}{a\left(c-b\right)-b\left(c-b\right)}+\frac{1}{c\left(c-a\right)-b\left(c-a\right)}\)

\(=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(a-b\right)\left(c-b\right)}-\frac{1}{\left(c-b\right)\left(a-c\right)}\)

\(=\frac{c-b}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}+\frac{a-c}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}-\frac{a-b}{\left(a-b\right)\left(c-b\right)\left(a-c\right)}\)

\(=\frac{c-b+a-c-a+b}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}=0\)

Vậy M = 0

Duong Thuc Hien
Xem chi tiết
Lương Phan
Xem chi tiết
alibaba nguyễn
1 tháng 7 2017 lúc 17:26

Ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}a+b=0\\b+c=0\\c+a=0\end{cases}}\)

Với \(a+b=0\)

Thì \(\hept{\begin{cases}\frac{1}{a^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}=\frac{1}{c^{2005}}\\\frac{1}{a^{2005}+b^{2005}+c^{2005}}=\frac{1}{c^{2005}}\end{cases}}\)

Tương tự cho 2 trường hợp còn lại ta có ĐPCM

Trần Nữ Khánh Điệp
Xem chi tiết
Trần Nữ Khánh Điệp
1 tháng 9 2016 lúc 11:41

ai làm đúng và nhanh nhất mình tích cho!!!!!!!!!

Ooo Nhók Ngốk ooO
8 tháng 1 2017 lúc 19:46

em moi hoc lop 7

Nguyễn Tuấn Anh
Xem chi tiết
Ngọc Hạnh Nguyễn
Xem chi tiết