nhị thức bậc nhất (theo biến x) là đa thức có dạng f(x) =ax + b với a;b là hằng số và a khác 0. Hãy xác định các hệ số a;b biết f(1) = 2, f(3) = 8
Nhị thức bậc nhất (theo biến x) là đa thức có dạng f(x)=ax+b với a;b là hằng số khác 0. Xác định các hệ số a;b biết: f(1)=2; f(3)=8
Giải dùm tớ nhé
Tam thức bậc 2 (theo biến x) là đa thức có dạng f(x)=ax^2+bx+c với a,b,c là các hằng số và a khác 0. Xác định các hệ số a,b,c biết: f(1)=4; f(-1)=8 và a-c=-4
Giúp với!
Cho biết nhị thức bậc nhất là đa thức có dạng f(x)=ax+b^2 (a,b là hằng số, a khác 0). Xác định a,b biết f(1)=2;f(3)=8
\(f\left(1\right)=2\Rightarrow a.1+b^2=2\)
\(\Rightarrow a+b^2=2\Rightarrow b^2=2-a\)
\(f\left(3\right)=8\Rightarrow a.3+b^2=8\Rightarrow3a+b^2=8\)
\(\Rightarrow3a+\left(2-a\right)=8\)
\(\Rightarrow3a+2-a=8\)
\(\Rightarrow2a=6\)
\(\Rightarrow a=3\)
Khi đó , \(b^2=2-3=-1\)
hmmm... mình có làm sai đoạn nào ko nhỉ . Sao tự dưng b thuộc rỗng
tìm đa thức một biến bậc nhất của x: f(x)=ax=b, biết f(0)=5 và f(-1)=2
Tam thức bậc hai là đa thức có dạng f(x) = ax2+ bx +c với a,b,c là hằng số khác 0
Hãy xác định các hệ số a,b biết f(1)=2;f(3)=8
Cho tam thức bậc hai f(x) = ax^2 + bx + c >0 với mọi x thuộc R. Cmr f(x) luôn biểu diễn thành tổng bình phương hai nhị thức bậc nhất.
Tam thức bậc hai là đa thức có dạng f(x) = ax + b với a, b, c là hằng, a khác 0.
Hãy xác định các hệ số a, b biết f(1) = 2; f(3) = 8
Giup mk nha các bạn
Tam thức bậc 2 là đa thức có dạng f(x)=ax2+bx+c với a,b,c là hằng số (a khác 0). Hãy xác định các hệ số a,b,c, biết f(1)=4; f(-1)=8 và a-c= -4
xét f(x) =ax^2+bx+c
ta co f(1)=a+b+c=4, f(-1)=a-b+c=8
=> 2(a+c)=12
=> a+c=6 kết hợp a-c=-4 => a=1, c=5, kết hợp a+b+c=4 => b=-2
Vậy a=1, b=-2, c=5 là giá trị cần tìm.
1. Xác định các đa thức sau:
a) Nhị thức bậc nhất f(x) = ax + b với a≠0, biết f(-1) = 1 và f(1) = -1
b) Tam thức bậc hai \(g\left(x\right)=ax^2+bx+c\) với a≠0, biết g(-2) = 9, g(-1) = 2, g(1)=6
2.a) Đa thức f(x) = ax + b (a≠0). Biết f(0) = 0. Chứng minh f(x) = -f(-x) với mọi x
b) Đa thức f(x) = ax2 + bx + c (a≠0). Biết f(1) = f(-1). Chứng minh f(x) = f(-x) với mọi x.
3. Tìm tổng các hệ số của đa thức sau khi phá ngoặc và sắp xếp, biết:
a) Đa thức \(f\left(x\right)=\left(2x^3-3x^2+2x+1\right)^{10}\)
b) Đa thức \(g\left(x\right)=\left(3x^2-11x+9\right)^{2011}.\left(5x^4+4x^3+3x^2-12x-1\right)^{2012}\)
1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)
và \(f\left(1\right)=-1\Rightarrow a+b=-1\)
Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)
Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)
Suy ra \(ax+b=-x+b\)
Vậy ...
Tớ nêu hướng giải bài 3 thôi nhé:
Bài toán: Cho đa thức \(f\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0\)
Chứng minh tổng các hệ số của đa thức f(x) là giá trị của đa thức khi x = 1
Lời giải:
Thật vậy,thay x = 1 vào:
\(f\left(1\right)=a_n+a_{n-1}+...+a_1+a_0\) (đúng bằng tổng các hệ số của đa thức)
Vậy tổng các hệ số của 1 đa thức chính là giá trị của đa thức đó khi x = 1 (đpcm)