Cho:a/b=b/c=c/a (a+b+c khác 0;b,c khác 0) Và a=2015 tính b ,c
Tìm số tự nhiên a,b,c sao cho:a+B+C=abc và a>b>c>0
Cho:a/b < c/d. Chứng tỏ:
a/b <a+c/b+d < c/d
(a,b,c,d>0)
Ta có : a/b < c/d => ad < cb
=>ad +ab < bc+ab
=> a(d+b) < b(a+c)
=> a/b < a+c/d+b (1)
Ta có : a/b < c/d => ad<cb
=> ad + cd < cb +cd
=> d(a+c) < c(b+d)
=> c/d > a+c/b+d (2)
Từ (1) và (2) => a/b < a+c/b+d < c/d
Cho:a+b+c=o:
1/a+1/b+1/c=1.Chứng.minh:a^2+b^2+c^2=0
\(Cho:a+b+c=1;a;b;c>0.timMax:P=ab-ac\)
Sửa đề: \(a;b;c\ge0\) (nếu không thì không có max đâu cu!)
Ta có: \(P=a\left(b-c\right)\le ab\le\frac{\left(a+b\right)^2}{4}=\frac{1}{4}\)
Đẳng thức xảy ra khi \(a=b=\frac{1}{2};c=0\)
Vậy..
\(Cho:A=a+b+c=0\)
Tính \(A=\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\left(\dfrac{c}{a-b}+\dfrac{a}{b-c}+\dfrac{b}{c-a}\right)\)
Có:\(a+b+c=0\Rightarrow c=-a-b\)
\(\Rightarrow b=-a-c\)
\(\Rightarrow a=-b-c\)
Cho \(B=\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\)
\(1\)\(\Rightarrow B.\dfrac{c}{a-b}=\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right).\dfrac{c}{a-b}\)
\(\Rightarrow B.\dfrac{c}{a-b}=1+\dfrac{c}{a-b}\left(\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\)
\(\Rightarrow B.\dfrac{c}{a-b}=1+\dfrac{c}{a-b}.\dfrac{b^2-bc+ac-a^2}{ab}\)
\(\Rightarrow B.\dfrac{c}{a-b}=1+\dfrac{c}{a-b}.\dfrac{\left(a-b\right)\left(c-a-b\right)}{ab}\)
\(\Rightarrow B.\dfrac{c}{a-b}=1+\dfrac{2c^2}{ab}=1+\dfrac{2c^3}{abc}\)
\(2\ B.\dfrac{a}{b-c}=\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right).\dfrac{a}{b-c}\)
\(\Rightarrow B\dfrac{a}{b-c}=1+\dfrac{a}{b-c}\left(\dfrac{a-b}{c}+\dfrac{c-a}{b}\right)\)
\(\Rightarrow B.\dfrac{a}{b-c}=1+\dfrac{a}{b-c}\left(\dfrac{ab-b^2+c^2-ac}{bc}\right)\)
\(\Rightarrow B.\dfrac{a}{b-c}=1+\left(\dfrac{\left(b-c\right)\left(b+c\right)-a\left(b+c\right)}{bc}\right)\dfrac{a}{b-c}\)
\(\Rightarrow B.\dfrac{a}{b-c}=1+\left(\dfrac{\left(b+c\right)\left(b-c-a\right)}{bc}\right).\dfrac{a}{b-c}\)
\(\Rightarrow B.\dfrac{a}{b-c}=1+\dfrac{2a^3}{abc}\)
\(3\ \)\(B.\dfrac{b}{c-a}=1+\dfrac{2b^3}{abc}\)
\(\Rightarrow A=\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\left(\dfrac{c}{a-b}+\dfrac{a}{b-c}+\dfrac{b}{c-a}\right)\)
\(\Rightarrow\left(B.\dfrac{c}{a-b}\right)+\left(B.\dfrac{a}{b-c}\right)+\left(B.\dfrac{b}{c-a}\right)\)
\(\Rightarrow1+\dfrac{2a^3}{abc}+1+\dfrac{2b^3}{abc}+1+\dfrac{2c^3}{abc}\)
\(\Rightarrow3+\dfrac{2\left(a^3+b^3+c^3\right)}{abc}\)
Áp dụng hằng đẳng thức mở rộng \(a^3+b^3+c^3=3abc\) khi \(a+b+c=0\)
\(\Rightarrow A=9\)
nhailaier you ngáo ak
Cho \(A=a+b+c=0\)
Tính \(A=\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\left(\dfrac{c}{a-b}+\dfrac{a}{b-c}+\dfrac{b}{c-a}\right)\) chắc chắn bằng 0 rồi :V
Cho:A=xa*yb*zc(z;x;y khác nhau và là số nguyên tố)
CMR:số ước của A=(a+1).(b+1).(c+1)
Cho:a+b+c=0.Chứng minh:\(a^3+b^3+c^3\)=abc
Cho:a,b,c,d>0 thỏa mãn:a^3+b^3+c^3=3d^3,b^5+c^5+d^5=3a^5,c^7+d^7+a^7=3b^7.CMR:a=b=c=d
\(Cho:a,b,c>0.CMR:\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)
Áp dụng BĐT Cosi dạng engel cho 3 số dương ta có:
\(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)
Dấu "=" xảy ra khi \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Ta thấy \(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\)đều là số dương
Vì thế nên ta sẽ áp dụng bđt cô-si dạng engel:
\(\frac{x^2+y^2+z^2}{a+b+c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)
Vậy đẳng thức chỉ xảy ra khi \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Giải cách khác được ko bn ơi mình chưa học BĐT Cô-si