Khảo sát sự biến thiên và vẽ đồ thị của mỗi hàm số sau:
a) y = – x3 + 3x – 2;
b) y = x3 + 3x2 + 3x + 1.
Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:
a. y=x3-3x+2
b. y=x3+1
c. y= -x3+3x+1
d. y=-x3-5x2-9x-4
e. y=x4-2x2-1
f. y= \(-\dfrac{x^4}{2}\)-x2+\(\dfrac{3}{2}\)
g. y=2x2-x4
Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số: y = − x 3 + 3x + 1
Cho hàm số : y = x 3 – 3 x 2 . Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho.
TXĐ: D = R
Sự biến thiên:
y′ = 3 x 2 – 6x = 3x(x – 2)
y′=0 ⇔
Hàm số đồng biến trên mỗi khoảng (– ∞ ;0), (2;+ ∞ )
Hàm số nghịch biến trên khoảng (0; 2).
Hàm số đạt cực đại tại x = 0 ; y CĐ = y(0) = 0
Hàm số đạt cực tiểu tại x = 2; y CT = y(2) = -4.
Giới hạn:
Điểm uốn: y” = 6x – 6, y” = 0 ⇔ x = 1; y(1) = –2
Suy ra đồ thị có điểm uốn I(1; -2)
Bảng biến thiên:
Đồ thị:
Đồ thị cắt trục hoành tại O(0;0), A(3;0). Đồ thị đi qua điểm B(-1;-4); C(2;-4).
Khảo sát sự biến thiên và vẽ đồ thị hàm số: y = x 3 + 3 x 2 + 1
+ Bảng biến thiên:
Kết luận:
Hàm số đồng biến trên các khoảng (-∞; -2) và (0; +∞).
Hàm số nghịch biến trên khoảng (-2; 0).
Hàm số đạt cực tiểu tại x = 0 ; y C T = 1 .
Hàm số đạt cực đại tại x = -2 ; y C Đ = 5 .
- Đồ thị:
+ Giao với Oy: (0; 1).
+ Đồ thị (C) đi qua điểm (–3; 1), (1; 5).
Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số: f x = - x 3 + 3 x 2 + 9 x + 2
+ Giới hạn:
+ Bảng biến thiên:
Kết luận:
Hàm số đồng biến trên (-1; 3)
Hàm số nghịch biến trên (-∞; -1) và (3; +∞).
Hàm số đạt cực đại tại x = 3, yCĐ = 29.
Hàm số đạt cực tiểu tại x = -1; y C T = - 3
- Đồ thị:
+ Giao với trục tung tại (0; 2).
+ Đi qua các điểm (-2; 4); (2; 24).
khảo sát sự biến thiên và vẽ đồ thị hàm số:
a. y=x3-3x2+2
b. y=x3+1
Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số y = x + 3 x + 1
Khảo sát hàm số
- TXĐ: D = R \ {-1}
- Sự biến thiên:
+ Chiều biến thiên:
⇒ Hàm số nghịch biến trên các khoảng (-∞; -1) và (-1; +∞).
+ Cực trị: Hàm số không có cực trị.
+ Tiệm cận:
⇒ x = -1 là tiệm cận đứng của đồ thị hàm số.
⇒ y = 3 là tiệm cận đứng của đồ thị hàm số.
+ Bảng biến thiên:
- Đồ thị:
+ Giao với Ox: (-3; 0)
+ Giao với Oy: (0; 3)
+ Đồ thị hàm số nhận (-1; 1) là tâm đối xứng.
Khảo sát sự biến thiên và vẽ đồ thị hàm số Y=-x^3+3x^2-4x+2
Cho hàm số y = - 1 3 x 3 + a - 1 x 2 + a + 3 x - 4
Khảo sát sự biến thiên và vẽ đồ thị (C) của đồ thị hàm số a=0
Với a = 0 ta có hàm số
- Tập xác định : D = R.
- Sự biến thiên :
y’ = -x2 – 2x + 3 ;
y’ = 0 ⇔ x = -3 hoặc x = 1.
QUẢNG CÁOBảng biến thiên :
Kết luận :
Hàm số đồng biến trên (-3 ; 1)
Hàm số nghịch biến trên (-∞; -3) và (1; +∞).
Hàm số đạt cực đại tại x = 1 ;
Hàm số đạt cực tiểu tại x = -3 ; yCT = -13.
- Đồ thị hàm số :
Cho hàm số: y = 4 x 3 + mx (m là tham số) (1). Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số ứng với m = 1
y = 4 x 3 + x, y′ = 12 x 2 + 1 > 0, ∀ x ∈ R
Bảng biến thiên:
Đồ thị: