Những câu hỏi liên quan
Xem chi tiết
Nguyễn Hoàng Minh
3 tháng 12 2021 lúc 9:55

\(a,\) Gọi 2 số đó là \(2n+1;2n+3\left(n\in N\right)\)

Gọi \(d=ƯCLN\left(2n+1,2n+3\right)\)

\(\Rightarrow2n+1⋮d;2n+3⋮d\\ \Rightarrow2n+3-2n-1⋮d\\ \Rightarrow2⋮d\)

Mà \(d\) lẻ nên \(d=1\)

Vậy \(ƯCLN\left(2n+1,2n+3\right)=1\left(đpcm\right)\)

\(b,\) Gọi \(d=ƯCLN\left(2n+5,3n+7\right)\)

\(\Rightarrow2n+5⋮d;3n+7⋮d\\ \Rightarrow2\left(3n+7\right)-3\left(2n+5\right)⋮d\\ \Rightarrow-1⋮d\\ \Rightarrow d=1\)

Vậy \(ƯCLN\left(2n+5,3n+7\right)=1\left(đpcm\right)\)

Bình luận (4)
Xem chi tiết

gọi ƯCLN(2n+5, 3n+7) là d 
ta có 2n+5 chia hết cho d => 3(2n+5) chia hết cho d <=> 6n+15 chia hết cho d(1) 
3n+7 chia hết cho d => 2(3n+7) chia hết cho d <=> 6n+14 chia hết cho d(2) 
=> (6n+15) -( 6n+14) chia hết cho d hay 1 chia hết cho d --> 2n+5, 3n+7 ngtố cùng nhau

mk chỉ biết làm câu b mong bạn thông cảm

Bình luận (0)
shitbo
25 tháng 10 2018 lúc 15:30

Ta có:

2 số lẻ liên tiếp là

2k+1 và 2k+3

Đặt số d

Ta có:

2k+3 CHIA HẾT CHO d

2k+1 CHIA HẾT CHO d

Ta có

2k+3-(2k+1) CHIA HẾT CHO d

=>2 CHIA HẾT CHO d

nhưng 2k+3 là số lẻ

=>2k+3 KHÔNG CHIA HẾT CHO 2

Vậy d=1

=> 2 số lẻ liên tiếp luôn luôn là 2 SỐ NGUYÊN TỐ CÙNG NHAU

b, Đặt ƯCLN của 2n+3;3n+7 là D

Ta có:

2n+5 CHIA HẾT CHO D

3n+7 CHIA HẾT CHO D

=>

3(2n+5)-2(3n+7) CHIA HẾT CHO D

=>1 CHIA HẾT CHO D

=> D THUỘC ƯCLN LÀ 1

=> 2n+5 và 3n+7 luôn luôn là 2 SỐ NGUYÊN TỐ CÙNG NHAU

Bình luận (0)
Lê Phạm Mạnh Trường
Xem chi tiết
Nguyễn Thị Thương Hoài
24 tháng 7 2023 lúc 21:01

Câu 1: 2n + 5 và 3n + 7

    Gọi ước chung lớn nhất của 2n + 5 và 3n + 7 là d

        Theo bài ra ta có: 

         \(\left\{{}\begin{matrix}2n+5⋮d\\3n+7⋮d\end{matrix}\right.\)

     ⇔ \(\left\{{}\begin{matrix}6n+15⋮d\\6n+14⋮d\end{matrix}\right.\)

          6n + 15 -  6n  - 14 ⋮ d

                                    1 ⋮ d

         ⇒ d = 1

Vậy ước chung lớn nhất của 2n + 5 và 3n + 7 là 1

Hay 2n + 5 và 3n + 7 là hai số nguyên tố cùng nhau (đpcm)

Bình luận (0)
Trần Thị Ngọc Hà
24 tháng 7 2023 lúc 20:52

gọi 2.n +1 là một số lẻ bất kì (n thuộc N )

suy ra 2n +1 và 2n+3 là 2 số lẻ liên tiếp  

gọi d thuoocj vào ƯC(2n+1,2n+3 )  (d thuộc N*)

suy ra 2n+1 và 2n+3 chia hết cho d 

suy ra [(2n+3) - (2n+1)] chia hết cho d 

suy ra 2 chia hết cho d

suy ra d thuộc Ư(2) ={1;2}

 suy ra d khác 2 (vì  2n+1 và 2n+3 là các số lẻ )

suy ra d =1 

suy ra ƯC (2n+1 ,2n+3 ) =1

suy ra UWCLN (3n+1 , 2n+3) =1

suy ra 2n +1 và 2n+3 nguyên tố cùng nhau 

vậy 2 số lẻ liên tiếp luôn nguyên tố cùng nhau . 

Bình luận (0)
sát thiên mạch tỷ tỷ
Xem chi tiết
nguyen lam anh
29 tháng 11 2015 lúc 5:54

gọi 2.n +1 là một số lẻ bất kì (n thuộc N )

suy ra 2n +1 và 2n+3 là 2 số lẻ liên tiếp  

gọi d thuoocj vào ƯC(2n+1,2n+3 )  (d thuộc N*)

suy ra 2n+1 và 2n+3 chia hết cho d 

suy ra [(2n+3) - (2n+1)] chia hết cho d 

suy ra 2 chia hết cho d

suy ra d thuộc Ư(2) ={1;2}

 suy ra d khác 2 (vì  2n+1 và 2n+3 là các số lẻ )

suy ra d =1 

suy ra ƯC (2n+1 ,2n+3 ) =1

suy ra UWCLN (3n+1 , 2n+3) =1

suy ra 2n +1 và 2n+3 nguyên tố cùng nhau 

vậy 2 số lẻ liên tiếp luôn nguyên tố cùng nhau . 

Bình luận (0)
THI MIEU NGUYEN
Xem chi tiết
Nguyễn Huy Tú
6 tháng 8 2021 lúc 8:39

b, Gọi ƯCLN(2n+5;3n+7) = d ( \(d\in N\)*)

Ta có : 2n + 5 \(⋮\)d => 6n + 15 \(⋮\)d (1)

3n + 7 \(⋮\)d => 6n + 14 \(⋮\)d (2) 

Lấy (1) - (2) ta được : \(6n+15-6n-14⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy ta có đpcm 

Bình luận (0)
 Khách vãng lai đã xóa
Lily
Xem chi tiết
Lạc Dao Dao
19 tháng 12 2017 lúc 19:40

a, Ta phải chứng minh  ƯCLN(2n+1 ; 2n+3)=1

đặt : ƯCLN(2n+1;2n+3)=d

Suy ra : 2n+1 chia hết cho d 

           2n+3 chia hết cho d

Nên (2n+3) - (2n+1) chia hết cho d Hay 2 chia hết cho d 

 => d thuộc Ư(2)={1;2}

loại d=2 (vì d khác 2)

=> d = 1

Vậy 2 số tự nhiên lẻ liên tiếp nhau là 2 số nguyên tố cùng nhau

b, Gọi ƯCLN ( 2n+5 ; 3n+7)=p

Suy ra : 2n+5 chia hết cho p Hay 3.(2n+5)=6n+15 chia hết cho p

       3n+7 chia hết cho p Hay 2.(3n+7)=6n+14 chia hết cho p

Nên : (6n+15) - (6n+14) chia hết cho p hay 1chia hết cho p

=>p= 1 

vậỷ 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau

Bình luận (0)
Phạm Trần Hồng  Anh
Xem chi tiết
Nguyễn Ngọc Quý
7 tháng 11 2015 lúc 8:44

a) 2 số có dạng: 2k +1 ; 2k + 3

UC(2k + 1 ; 2k + 3) = UC(1;3) = 1

=> dpcm

b) Gọi UCLN(2n + 5 ;3n + 7) = d

2n +  5 chia hết cho d 

=> 6n + 15 chia hết cho d

3n + 7 chia hết cho d

=> 6n + 14 chia hết cho d

Mà UCLN(6n + 14 ; 6n + 15) = 1 <=> d = 1

=> DPCM

Bình luận (0)
Chi Quỳnh
Xem chi tiết
♥ℒℴѵe♥Girl 2k8ღ<Moon)
Xem chi tiết
nguyễn tuấn thảo
4 tháng 8 2019 lúc 21:07

Gọi 2 số lẻ liên tiếp đó là : \(n;n+2(n\inℕ^∗;n⋮̸2)\)

Gọi d là ƯCLN ( n ; n + 2 ) 

\(\Rightarrow n⋮d;n+2⋮d\)

\(\Rightarrow\left(n+2\right)-n=2⋮d\)

\(\Rightarrow d\inƯ\left(2\right)=\left\{1;2\right\}\)

Vì d là ước của 1 số lẻ nên d khác 2 

\(\Rightarrow d=1\)

Do đó 2 số lẻ liên tiếp nguyên tố cùng nhau.

Bình luận (0)
nguyễn tuấn thảo
4 tháng 8 2019 lúc 21:18

\(2n+5⋮d;3n+7⋮d\)

\(\Rightarrow3\left(2n+5\right)⋮d;2\left(3n+7\right)⋮d\)

\(\Rightarrow6n+15⋮d;6n+14⋮d\)

\(\Rightarrow\left(6n+15\right)-\left(6n+14\right)⋮d\)

\(\Rightarrow\left(6n-6n\right)+\left(15-14\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow\)

Bình luận (0)
Giang Lê
Xem chi tiết
Feliks Zemdegs
20 tháng 11 2015 lúc 16:36

a)Giải: Gọi hai số lẻ liên tiếp là 2n + 1 và 2n + 3 (n \(\in\) N).

Ta đặt ƯCLN (2n + 1, 2n + 3) = d.
Suy ra 2n + 1chia hết cho d; 2n + 3 chia hết cho d.

Vậy (2n + 3) – ( 2n + 1) chia hết cho d

Hay 2 chia hết cho d, suy ra d \(\in\) { 1 ; 2 }. Nhưng d \(\ne\) 2 vì d là ước của các số lẻ. Vậy d = 1, điều đó chứng tỏ 2n + 1 và 2n + 3 là hai số nguyên tố cùng nhau. 

Bình luận (0)
nguyễn văn nam
20 tháng 11 2015 lúc 16:35

dài quá bn tick mình mới làm

Bình luận (0)
Vương Thị Diễm Quỳnh
20 tháng 11 2015 lúc 16:38

a) gọi hai số lẻ liên tiếp là a ;a+2

gọi UCLN(a;a+2) là d ta có:

a chia hết cho d 

a+2 chia hết cho d

=>(a+2)-a chia hết cho d

=>2 chia hết cho d

=>d=1;2

nếu d=2 thì a ko chia hết cho bởi a lẻ

=>d=1

=>UCLN(...)=1

=>ntcn

b)gọi UCLN(2n+5;3n+7) là d

ta có :

2n+5 chia hết cho d=>3(2n+5) chia hết cho d =>6n+15 chia hết cho d\

3n+7 chia hết cho d =>2(3n+7) chia hết cho d=>6n+14 chia hết cho d

=>(6n+15)-(6n+14) chia hết cho d

=>1 chia hết cho d

=>d=1

=>UCLN(...)=1

=>ntcn

Bình luận (0)