Cho \(-1< a,b,c< 1;a+b+c=0\)
CMR:\(a^2+b^2+c^2< 2\)
a)Cho a+b+c=1 và 1/a+1/b+1/c =0.Tính a^2+b^2+c^2
b)Cho a+b+c=2014 và 1/a+b + 1/a+c + 1/b+c=1/2014.Tính S=a/b+c + b/a+c + c/a+b
\(a,\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0=>\frac{ab+bc+ac}{abc}=0=>ab+bc+ac=0.abc=0\)
Mà \(a+b+c=1=>\left(a+b+c\right)^2=1=>a^2+b^2+c^2+2ab+2bc+2ac=1\)
\(=>a^2+b^2+c^2+2\left(ab+bc+ac\right)=1=>a^2+b^2+c^2=1-0=1\) (vì ab+bc+ac=0)
\(b,S=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)-3\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}-3=\left(a+b+c\right).\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)-3\)
\(=2014.\frac{1}{2014}-3=1-3=-2\)
Vậy.....................
1. Cho a,b,c>0 thỏa mãn 1/a+1/b+1/c=3.Tìm GTNN của P=1/a^2+1/b^2+1/c^2
2.Cho a,b,c khác 0 thỏa mãn a+b+c =0 và 1/a+1/b+1/c=7.Tính 1/a^2+1/b^2+1/c^2
3.Cho a<_b<_ c và a+b+c>0.Cm:a/b+b/c+c/a>_ b/a+c/b+a/c
1. Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)
Tương tự : \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\); \(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\). Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=9\)
\(9\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)
Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=49\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=49\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)
Xét hiệu \(A=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-\frac{b}{c}-\frac{c}{b}-\frac{a}{c}\)
\(\frac{a^2c+b^2a+c^2b-b^2c-c^2a-a^2b}{abc}\)
\(\frac{\left(c-b\right)\left(a-c\right)\left(a-b\right)}{abc}\)
Ta thấy c -b \(\ge\)0 ; a - c \(\le\)0 ; a - b \(\le\)0 nên ( c - b ) ( a - c ) ( a - b )\(\ge\)0
Mà abc > 0 nên A \(\ge\)0 => ....
Bài 1: Cho a,b,c >0 t/m: abc=1
CMR: \(\dfrac{1}{a^3+b^3+1}+\dfrac{1}{b^3+c^3+1}+\dfrac{1}{c^3+a^3+1}\le1\)
Bài 2: Cho a,b,c >0 t/m a+b+c=1
CMR: \(\dfrac{1+a}{1-a}+\dfrac{1+b}{1-b}+\dfrac{1+c}{1-c}\ge6\)
Bài 3: Cho a,b,c >0 t/m abc=1
CMR: \(\dfrac{ab}{a^4+b^4+ab}+\dfrac{bc}{b^4+c^4+bc}+\dfrac{ac}{c^4+a^4+ac}\le1\)
1)Cho 1/c=1/2(1/a + 1/b) với a,b,c khác 0 và b khác c.CMR: a/b=a-c/c-b
2)Cho 4 số dương a,b,c,d sao cho b=a+c/2 và c=2bd/b+d.CMR:a/b=c/d
3)Cho a,b,c là các số nguyên dương.CMR:M=a/a+b + b/b+c + c/c+a
Super Man mà lại còn phải lên đây để hỏi bài à?
1)Cho 1/c=1/2(1/a + 1/b) với a,b,c khác 0 và b khác c.CMR: a/b=a-c/c-b
2)Cho 4 số dương a,b,c,d sao cho b=a+c/2 và c=2bd/b+d.CMR:a/b=c/d
3)Cho a,b,c là các số nguyên dương.CMR:M=a/a+b + b/b+c + c/c+a
1)Cho 1/c=1/2(1/a + 1/b) với a,b,c khác 0 và b khác c.CMR: a/b=a-c/c-b
2)Cho 4 số dương a,b,c,d sao cho b=a+c/2 và c=2bd/b+d.CMR:a/b=c/d
3)Cho a,b,c là các số nguyên dương.CMR:M=a/a+b + b/b+c + c/c+a
a/ Cho abc khác 0 và a+b+c=1/a+1/b+1/c. C/m b(a^2-bc)(1-ac)=a(1-bc)(b^2-ac)
b/ Cho abc khác 0 và (a+b+c)2 = a2+b2+c2. C/m 1/a3 +1/b3 +1/c3 =
3/abc
Cập nhật: a/ Cho abc khác 0 và a+b+c=1/a+1/b+1/c. C/m b(a^2-bc)(1-ac)=a(1-bc)(b^2-ac)
b/ Cho abc khác 0 và (a+b+c)2 = a2+b2+c2. C/m 1/a^3 +1/b^3 +1/c^3 =
3/abc
Bài 1: Cho a,b,c thỏa mãn (a+b-c)/c=(b+c-a)/a=(c+a-b)/b
tính P=(1+b/a)*(1+c/b)*(1+a/c)
Bài 2: Cho a+b+c=0
tính B=((a^2+b^2-c^2)*(b^2+c^2-a^2)*(c^2+a^2-b^2))/(10*a^2*b^2*c^2)
Bài 3: cho a^3*b^3+b^3*c^3+c^3*a^3=3*a^3*b^3*c^3
tính M(1+a/b)*(1+b/c)*(1+c/a)
Bài 4: cho 3 số a,b,c TM a*b*c=2016
tính P=2016*a/(a*b+2016*a+2016) + b/(b*c+b+2016) + c/(a*c+c+1)
Bài 5: cho a+b+c=0
tính Q=1/(a^2+b^2-c^2) + 1/(b^2+c^2-a^2) + 1/(a^2+c^2-b^2)
Cho 3 số dương a,b,c thỏa a+b+c= 3 cmr:
√a +√b+ √c >=a+b+c.
Cho a,b,c>0: a+b+c=1. Chứng minh:
(1+a).(1+b).(1+c)>=8(1-a).(1-b).(1-c)
Bài 1. Mình nghĩ đề bài của bạn nhầm ở chỗ dấu "\(\ge\)" , bạn sửa lại thành "\(\le\)" nhé ^^
Áp dụng bất đẳng thức Bunhiacopxki : \(9=3\left(a+b+c\right)=\left(1^2+1^2+1^2\right)\left[\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2+\left(\sqrt{c}\right)^2\right]\ge\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\)
\(\Rightarrow\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\le9\Leftrightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\le3\)
\(\Leftrightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\le a+b+c\) (vì a+b+c = 3)
Bài 2.
Để chứng minh bất đẳng thức trên ta biến đổi : \(a+b+c=1\Leftrightarrow a+1=\left(1-b\right)+\left(1-c\right)\)
Tương tự : \(b+1=\left(1-a\right)+\left(1-c\right)\) ; \(c+1=\left(1-a\right)+\left(1-b\right)\)
Áp dụng bất đẳng thức Cosi, ta có : \(a+1=\left(1-b\right)+\left(1-c\right)\ge2\sqrt{\left(1-b\right)\left(1-c\right)}\left(1\right)\)
Tương tự : \(b+1\ge2\sqrt{\left(1-a\right)\left(1-c\right)}\left(2\right)\) ; \(c+1\ge2\sqrt{\left(1-a\right)\left(1-b\right)}\left(3\right)\)
Nhân (1), (2) , (3) theo vế : \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge8\sqrt{\left(1-a\right)^2\left(1-b\right)^2\left(1-c\right)^2}=8\left(1-a\right)\left(1-b\right)\left(1-c\right)\)
\(\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge8\left(1-a\right)\left(1-b\right)\left(1-c\right)\) (đpcm)
a,cho x+y>=6;x,y>0,tìm min của p=5x+3y+10/x+8/y
b, a;b;c là 3 số thực dương thoả mãn a+2b+3c>=20. Tìm min của a+b+c+3/a+9/b+4/c
c,Cho x;y>0 thoả mãn x+y<=1, tìm min A=(1-1/x)-(1/y^2)
d,Cho a;b;c >0, a+b+c=<3/2, tìm min của A=a+b+c+1/a+1/b+1/c
e, Cho a,b dương,a;b=<1, tìm min của P=1/(a^2+b^2) +1/ab
g,Cho a;b;c>0, a+b+c=<1, tìm min của P=a+b+c+2(1/a+1/b+1/c)
Dự đoán dấu "=" và chọn điểm rơi phù hợp để áp dụng bất đẳng thức Trung bình cộng - Trung bình nhân