Cho f(x) là hàm liên tục và a>0. Giả sử rằng với mọi x thuộc [0;a] ta có f(x)>0 và f(x).f(a-x) = 1 Hãy tính I = ∫ 0 a d x 1 + f ( x ) theo a.
A. a.
B. a 2
C. 2a
D. 3a
Cho f(x) là hàm liên tục và a > 0. Giả sử rằng với mọi x ∈ 0 ; a ta có và f(x) = f ( a - x ) = 1 Hãy tính I = ∫ 0 a d x 1 + f x theo a.
A. a
B. a 2
C. 2a
D. a 2
Đặt x = a - t nên dx = -dt. Ta có
I = - ∫ a 0 d t 1 + f a - t = ∫ 0 a d t 1 + 1 f t = ∫ 0 a f t 1 + f t d t
Suy ra 2I = I + I = ∫ 0 a d t = a. Vậy I = a 2
Đáp án B
Cho hàm số y = f(x) liên tục trên R và a > 0. Giả sử rằng với mọi x ∈ 0 ; a , ta có f(x) > 0 và f(x)f(a – x) = 1. Tính I = ∫ 0 a d x 1 + f ( x ) .
A. a 2 .
B. 2a.
C. a 3 .
D. aln(a + 1).
Chọn A.
Từ giả thiết, suy ra f a - x = 1 f x
Đặt t=a-x suy ra dt=-dx . Đổi cận: x = 0 → t = a x = a → t = 0
Khi đó
Cho hàm số f(x) liên tục và a>0. Giả sử với mọi x ∈ 0 ; a ta có f(x)>0 và f(x).f(a-x) = 1. Tính I = ∫ 0 a d x 1 + f ( x )
Giả sử hàm số y=f(x) liên tục, nhận giá trị dương trên (0;+∞) và thỏa mãn f(1)=1, f ( x ) = f ' ( x ) 3 x + 1 , với mọi x>0. Mệnh đề nào sau đây đúng
A. 1<f(5)<2
B. 4<f(5)<5
C. 2<f(5)<3
D. 3<f(5)<4
Giả sử hàm số y=f(x) liên tục, nhận giá trị dương trên 0 ; + ∞ và thỏa mãn f(1)=1, f ( x ) = f ' ( x ) 3 x + 1 , với mọi x>0. Mệnh đề nào sau đây đúng?
Giả sử hai hàm số y = f(x) và y = f(x + 0,5) đều liên tục trên đoạn [0; 1] và f(0) = f(1). Chứng minh rằng phương trình f(x) − f(x + 0,5) = 0 luôn có nghiệm trong đoạn [0; 0,5]
Xét hàm số g(x) = f(x) − f(x + 0,5)
Ta có
g(0) = f(0) − f(0 + 0,5) = f(0) − f(0,5)
g(0,5) = f(0,5) − f(0,5 + 0,5) = f(0,5) − f(1) = f(0,5) − f(0)
(vì theo giả thiết f(0) = f(1)).
Do đó,
g ( 0 ) . g ( 0 , 5 ) = [ f ( 0 ) − f ( 0 , 5 ) ] . [ f ( 0 , 5 ) − f ( 0 ) ] = − f ( 0 ) − f ( 0 , 5 ) 2 ≤ 0 .
- Nếu g(0).g(0,5) = 0 thì x = 0 hay x=0,5 là nghiệm của phương trình g(x) = 0
- Nếu g(0).g(0,5) < 0 (1)
Vì y = f(x) và y = f(x + 0,5) đều liên tục trên đoạn [0; 1] nên hàm số y = g(x) cũng liên tục trên [0; 1] và do đó nó liên tục trên [0; 0,5] (2)
Từ (1) và (2) suy ra phương trình g(x) = 0 có ít nhất một nghiệm trong khoảng
Kết luận : Phương trình g(x) = 0 hay f(x) − f(x + 0,5) = 0 luôn có nghiệm trong đoạn (0;0,5)
Cho số thực a>0. Giả sử hàm số f(x) liên tục và luôn dương trên đoạn [0;a] thỏa mãn f(x).f(a – x) = 1, ∀ x ∈ [0;a]. Tính tích phân I = ∫ 0 a 1 1 + f ( x ) d x
Đáp án A
Phương pháp : Sử dụng phương pháp đổi biến, đặt x = a – t.
Cách giải : Đặt x = a – t => dx = –dt. Đổi cận
=>
Cho số thực a>0. Giả sử hàm số f(x) liên tục và luôn dương trên đoạn [0;a] thỏa mãn f(x).(fa-x) = 1 Tính tích phân ∫ 0 1 1 1 + f ( x ) d x
A. I = a/2
B. I = a
C. I = 2a/3
D. I = a/3
Giả sử f(x) là hàm số liên tục trên đoạn [a; b], F(x) và G(x) là hai nguyên hàm của f(x). Chứng minh rằng F(b) – F(a) = G(b) – G(a), (tức là hiệu số F(b) – F(a) không phụ thuộc việc chọn nguyên hàm).
- Vì F(x) và G(x) đều là nguyên hàm của f(x) nên tồn tại một hằng số C sao cho: F(x) = G(x) + C
- Khi đó F(b) – F(a) = G(b) + C – G(a) – C = G(b) – G(a).