Giả sử hàm số y = f(x) liên tục, nhận giá trị dương trên khoảng 0 ; + ∞ và thỏa mãn f(1) = 1; f ( x ) = f ' ( x ) 3 x + 1 . Mệnh đề nào đúng trong các mệnh đề dưới đây
Giả sử hàm số y = f x liên tục, nhận giá trị dương trên khoảng 0 ; + ∞ và thỏa mãn f 1 = 1 , f x = f ' x 3 x + 1 , ∀ x > 0 . Mệnh đề nào đúng trong các mệnh đề dưới đây
A. m a x f ( x ) > 3 x ∈ 2 ; 4
B. m a x f ( x ) < 1 x ∈ 2 ; 4
C. 2 < m a x f ( x ) < 3 x ∈ 2 ; 4
D. m a x f ( x ) = 3 2 x ∈ 2 ; 4
Cho hàm số f(x) liên tục trên ℝ và f(x) ≠ 0 với mọi x ∈ ℝ . f ' ( x ) = ( 2 x + 1 ) f 2 ( x ) và f(1)=-0,5. Biết rằng tổng f(1)+f(2)+f(3)+...+f(2017)= a b với a b tối giản.
Mệnh đề nào dưới đây đúng?
Cho hàm số f(x) có đạo hàm cấp hai f''(x) liên tục trên đoạn [0;1] thoả mãn f(1) = f(0) = 1; f'(0) = 2018 Mệnh đề nào dưới đây đúng?
Cho hàm số y = f(x) xác định trên khoảng (0; +∞) và thỏa mãn lim x → + ∞ f ( x ) = 1 Với giả thiết đó, hãy chọn mệnh đề đúng trong các mệnh đề sau:
A. Đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số y = f(x)
B. Đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số y = f(x)
C. Đường thẳng x = 1 là tiệm cận ngang của đồ thị hàm số y = f(x)
D. Đường thẳng y = 1 là tiệm cận đứng của đồ thị hàm số y = f(x)
Cho số thực a>0. Giả sử hàm số f(x) liên tục và luôn dương trên đoạn [0;a] thỏa mãn f(x).(fa-x) = 1 Tính tích phân ∫ 0 1 1 1 + f ( x ) d x
A. I = a/2
B. I = a
C. I = 2a/3
D. I = a/3
Cho hàm số liên tục trên khoảng (a;b) và x 0 ∈ ( a ; b ) . Có bao nhiêu mệnh đề đúng trong các mệnh đề sau?
(1) Hàm số đạt cực trị tại điểm x 0 khi và chỉ khi f ' ( x 0 ) = 0 .
(2) Nếu hàm số y = f ( x ) có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thỏa mãn điều kiện f ' ( x 0 ) = f ' ' ( x 0 ) = 0 thì điểm x 0 không phải là điểm cực trị của hàm số y = f ( x ) .
(3) Nếu f'(x) đổi dấu khi x qua điểm x 0 thì điểm x 0 là điểm cực tiểu của hàm số y = f ( x ) .
(4) Nếu hàm số y = f ( x ) có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thỏa mãn điều kiện f ' ( x 0 ) = 0 , f ' ' ( x 0 ) > 0 thì điểm x 0 là điểm cực tiểu của hàm số y = f ( x ) .
A. 1
B. 2
C. 0
D. 3
Cho hàm số y=f(x) có đạo hàm liên tục trên ℝ thỏa mãn f'(x) -xf(x) = 0, f x > 0 , ∀ x ∈ ℝ và f(0) = 1. Giá trị của f(1) bằng?
A. 1 e .
B. 1 e .
C. e .
D. e.
Cho hàm số f(x) nhận giá trị dương và có đạo hàm liên tục trên đoạn [0;2] thoả mãn f(0) = 3; f(2) = 12 và ∫ 0 2 ( f ' ( x ) ) 2 f ( x ) d x = 6 Tính f(1)
A. 27/4
B. 25/4
C. 9/2
D. 15/4