GIÚP MÌNHHHH ZỚIII !!!!!
Cho AB là một đường kính của đường tròn (O;R = 2cm), vẽ dây AC = 2,4cm, tia BC cắt tiếp tuyến tại A của (O) ở M . Độ dài đoạn BM = cm?
Mọi người giúp mình viết giả thiết và kết luận với ạ....
Cho nửa đường tròn tâm O có đường kính AB (đường kính của một đường tròn chia đường tròn đó thành hai nửa đường tròn). Gọi Ax, By là các tia vuông góc với AB (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn nó cắt Ax và By theo thứ tự ở C và D.
Các bạn giúp mình với!Làm bằng cách giải của lớp 9 nha!Cho hai đường tròn (O), (O') tiếp xúc ngoài tại A. Gọi AB là đường kính của đường tròn (O), AC là đường kính của đường tròn (O'), DE là tiếp tuyến chúng của hai đường tròn, D∈ (O), E∈ (O'). K là giao điểm của BD và CE.a, Tính số đo góc DAEb,Tứ giác ADKE là hình gì? Vì sao?c, Chứng minh AK là tiếp tuyến chung của hai đường tròn (O) và (O')d, Gọi M là trung điểm của BC. Chứng minh MK ⊥ DE
Cho nửa đường tròn tâm O đường kính AB,C là một điểm thuộc đường tròn.H là hình chiếu cả C trên AB ,qua trung điểm M của CH,kẻ đường vuông góc với OC qua trung điểm cắt nửa đường tròn tại D và E.C/m AB là tếp tuyến của đường tròn tâm C bán kính CD
Vẽ hình giúp và giải giúp với!!!!Thanks
Cho đường tròn tâm O đường kính AB. Vẽ đường tròn tâm I đg kính OA bán kính OC của đg tròn tâm O cắt đg trong tâm I tại D. Vẽ CH vuong goc AB (C thuộc đg tròn tâm O, đg kính AB). C/m rằng ACDH là hình thang cân. Vẽ hình giúp e với luôn đk ạ
Xét (I) có
ΔADO nội tiếp
AO là đường kính
=>ΔADO vuông tại D
góc ADC=góc AHC=90 độ
=>AHDC nội tiếp
Xét ΔOHC vuông tại H và ΔODA vuông tại D có
OC=OA
góc HOC chung
=>ΔOHC=ΔODA
=>OH=OD
Xét ΔOAC có OH/OA=OD/OC
nên HD//AC
Xét tứ giác AHDC có
HD//AC
góc HAC=góc DCA
=>AHDC là hình thang cân
1. Cho nửa đường tròn (O) đường kính AB=2r.Trên nửa đường tròn lấy một điểm M bất kì. Gọi C là đối điểm đối xứng của của B qua M.Tìm quĩ tích của các điểm C.
2. Cho nửa đường tròn O đường kính AB=2r. Trên nửa đường tròn lấy một điểm M tùy ý. Vẽ tia Ax vuông góc AB. Gọi H,K thể thu từ hình chiếu trên AB,Ax. Khi điểm M chuyển động trên nửa đường tròn O thì trung điểm I của đường thẳng HK chuyển động trên đường nào?
3. Cho đường tròn O đường kính AB=2r. M là một điểm chuyển động trên đường tròn đó.Gọi G là trọng tâm của tam giác MAB. Tìm quĩ tích của các điểm G.
vẽ hình làm chi tiết giúp mình
Bài : Cho đường tròn tâm O, đường kính AB, M là một điểm trên đường tròn, C là một điểm nằm giữa A và B. Qua M kẻ đường thẳng vuông góc với CM, đường thẳng này cắt các tiếp tuyến của đường tròn O kẻ từ A và B lần lượt tại E và F. Chứng minh rằng các tứ giác AEMC và BCMF nội tiếp
C là điểm nằm giữa A và B là sao bạn ? mình nghĩ AB là đường kính thì O là trung điểm AB rồi mà
Cho nửa đường tròn tâm O có đường kính AB/2 = R
Cho nửa đường tròn tâm O có đường kính AB = 2R. Kẻ hai tiếp tuyến Ax, By của nửa đường tròn (O) tại A và B (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng có bờ là đường thẳng AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn, cắt tia Ax và By theo thứ tự tại C và D.
a, CM : góc COD = 90o
b, CM : CD = AC + BD
c)Cm AC.BD=ABmu 2
d)CM OC//BM
e)CM AB la tiep tuyen (o'CD/2)
k)CM MN vuong goc AB
h)xac dinh vi tri diem M de chu vi ACDB co GTNN
cho đường tròn tâm O, đường kính AB,CD là đường kính khác của đường tròn (O). Tiếp tuyến tại B của đường tròn (O) cắt AC và AD lần lượt tại N và M. Chứng minh tứ giác: CDMN nội tiếp
(AI GIẢI GIÚP MÌNH VỚI)
Cho nữa đường trong o, đường kính AB. C là một điểm thuộc đường tròn o. H là hình chiếu của C tre AB. Qua trung điểm của CH , vẽ đường vuông góc với OC cắt nữa đường tròn tại D và E . Chứng minh rằng AB là tiếp tuyến của đường tròn tâm C bán kính CD.
có cách này nè:
vẽ nữa (O) kia. vẽ đường kính COK.gọi giao điểm của EM vs CK là F. ta có: tam giác CEK nội tiếp (O), có CK là đường kính => tam giác CEK vuông tại E, có đường cao EF => = CF.CK(1)
ta có: tam giác CMF Đồng dạng với tam giác COH(g.g) => CM/ OC = CF/CH \(\Rightarrow\)CH/CK = CF/CH \(\Rightarrow\)CH2 = CK.CF (2) => từ (1);(2)=> CE=CH. mà ta dễ dàng c/m được CE=CD. vậy CH = CD, nên H thuộc (O;CD). mà CH vuông góc với AB. => dpcm