Cho 1 đ/tròn(O,R) và (O’;R’) tiếp xúc ngoài tại A.Vẽ tiếp tuyến chung ngoài BC(B∈(O),C∈(O’))
a)Chứng minh TG ABC vuông
b)Tính SBCO’O biết R=9cm,r=4cm
Câu 1: Cho 2 đường tròn (O;R) và (O’;r), R > r
Trong các phát biểu sau phát biểu nào là phát biểu sai
A. Hai đường tròn (O) và (O’) cắt nhau khi và chỉ khi R - r < OO' < R + r
B. Hai đường tròn (O) và (O’) tiếp xúc ngoài khi và chỉ khi OO’ = R - r
C. Hai đường tròn (O) và (O’) tiếp xúc trong khi và chỉ khi OO’ = R - r
D. Hai đường tròn (O) và (O’) gọi là ngoài nhau khi và chỉ khi OO’ > R + r
Câu 2: Gọi d là khoảng cách 2 tâm của (O, R) và (O', r) với 0 < r < R. Để (O) và (O') tiếp xúc trong thì:
A. R - r < d < R + r
B. d = R - r
C. d > R + r
D. d = R + r
Câu 3: Cho hai đường tròn tâm O và O' có d=OO' và bán kính lần lượt R và R'.Trong các câu sau,câu nào sai?
A.Điều kiện cần và đủ để hai đường tròn đã cho cắt nhau là: R-R'<d<R+R'
B.Điều kiện cần và đủ để hai đường tròn đã cho cắt nhau là: |R-R'|<d<R+R'
C.Điều kiện cần và đủ để hai đường tròn đã cho cắt nhau là R,R' và d là độ dài ba cạnh của một tam giác
D.Trong ba câu trên,chỉ có câu a là câu sai
Câu 4: Cho hai đường tròn đồng tâm O,bán kính R và 2R.Gọi P là một điểm nằm ngoài đường tròn (O,2R).Vé đường tròn tâm P bán kính PO,cắt đường tròn (O,2R) tại 2 điểm C,D.OC cắt đường tròn (O;R) tại E.OD cắt đường tròn (O;R) tại F.Khi đó:
(1) EO=EC=R và OF=FD=R
(2) PE là đường cao của tam giác POC
(3) PF là đường cao của tam giác POD
Trong các câu trên:
A.Chỉ có câu (1) đúng
B.Chỉ có câu (2) đúng
C.Chỉ có câu (3) đúng
D.Cả ba câu đều đúng
E.Tất cả ba câu đều sai
Câu 5: Cho đường tròn (O). A, B, C là 3 điểm thuộc đường tròn sao cho tam giác ABC cân tại A. Phát biểu nào sau đây đúng
Tiếp tuyến của đường tròn tại A là
A. Đi qua A và vuông góc AB
B. Đi qua A và song song BC
C. Đi qua A và song song AC
D. Đi qua A và vuông góc BC
a: Xét tứ giác OCMA có
góc OCM+góc OAM=180 độ
nên OCMA là tứ giác nội tiếp
b: Xét (O) có
MC,MA là tiếp tuyến
nên MC=MA
mà OC=OA
nên OM là trung trực của AC
=>OM vuông góc với AC tại trung điểm của CA
Xét ΔABC có O,I lần lượt là trung điểm của AB,AC
nên OI là đường trung bình
=>OI=1/2BC
=>BC=2IO
Cho đường tròn O bán kính R và một điểm P nằm bên ngoài đường tròn . Kẻ các tiếp tuyến PA ,PB với đường tròn ( O , R ) ( A, B là hai tiếp điểm ). Gọi C là điểm đối cứng của B qua O . Đường thẳng OC cắt đường tròn ( O ,R ) tại điểm D ( khác C) . Hai đường thẳng AD và OP cắt nhau tại Q a, Chứng minh tứ giác PAOB nội tiếp đường tròn b, Chứng mình rằng PQ mũ 2 = QA*QD c, Giả sử P cách O một khoảng 4 căn 3 cm. Tính bán kính R của đường tròn đã cho để tứ giác OAQB là hình thoi.
1.Cho đường tròn (O,R=8cm) đường kính AB và một điểm C thuộc đường tròn (O) sao cho AC=R.
a) Tính BC và số đo góc B,C
b)Đường cao CH trong tam giác ABC cắt đường tròn (O) tại D.Chứng minh H là trung điểm của CD
c) Gọi I là trung điểm của BC,K là trung điểm của AC.Chứng minh CIOK là hình chữ nhật .
Bài 2:Cho đường tròn (O,R) đường kính AB , M là trung điểm của OB. Vẽ da6y CD vuông góc với AB tại M
a) Chứng minh: OCBD là hình thoi. Tính diện tích OCBD theo R
b) Gọi E là điểm đối xứng của C qua O. Chứng minh CBDE là hình thang cân.
Bài 3:CHo tam giác ABC nội tiếp đường tròn (O). M là điểm bất kỳ trên cung BC không chứa A. Gọi D,E lần lượt là điểm đối xứng của M qua BC.
a) Chứng minh DE=2.AM.sin BAC
b) Xác định vị trí M để chu vi tam giác ADE lớn nhất
1.Cho đường tròn (O,R=8cm) đường kính AB và một điểm C thuộc đường tròn (O) sao cho AC=R.
a) Tính BC và số đo góc B,C
b)Đường cao CH trong tam giác ABC cắt đường tròn (O) tại D.Chứng minh H là trung điểm của CD
c) Gọi I là trung điểm của BC,K là trung điểm của AC.Chứng minh CIOK là hình chữ nhật .
Bài 2:Cho đường tròn (O,R) đường kính AB , M là trung điểm của OB. Vẽ dây CD vuông góc với AB tại M
a) Chứng minh: OCBD là hình thoi. Tính diện tích OCBD theo R
b) Gọi E là điểm đối xứng của C qua O. Chứng minh CBDE là hình thang cân.
Bài 3:CHo tam giác ABC nội tiếp đường tròn (O). M là điểm bất kỳ trên cung BC không chứa A. Gọi D,E lần lượt là điểm đối xứng của M qua BC.
a) Chứng minh DE=2.AM.sin BAC
b) Xác định vị trí M để chu vi tam giác ADE lớn nhất
Cho đường tròn (O;R), điểm A cố định nằm ngoài (O). Đường thẳng d cắt đ tròn tại B,C. chứng minh tâm K của đ tròn ngoại tiếp tam giác OBC thuộc 1 đường tròn cố định
cho đường tròn (O1;R1) tiếp xúc ngoài với đườg tròn (O2;R2) vẽ đường thẳng AB là tiếp tuyến chung ngoài của 2 đường tròn (O1)và (O2) vẽ đường tròn (O;R) tiếp xúc ngoài với cả 2 đường tròn (O1);(O2)
cmr :1/R +1/R1+ 1/R2
M.Bài 6.Cho hai đường tròn (O; R) và (O; R) tiếp xúc ngoài nhau tại M. Hai đường tròn (O) và (O) cùng tiếp xúc trong với đường tròn lớn (O; R) lần lượt tại E và F. Tính bán kính Rbiết chu vi tam giác OOOlà 20cm.
Bài 7.Cho đường tròn (O; 9cm). Vẽ 6 đường tròn bằng nhau bán kính R đều tiếp xúc trong với (O) và mỗi đường tròn đều tiếp xúc với hai đường khác bên cạnh nó. Tính bán kính R.
Bài 8.Cho hai đường tròn đồng tâm. Trong đường tròn lớn vẽ hai dây bằng nhau AB = CD và cùng tiếp xúc với đường tròn nhỏ tại M và N sao cho AB CD tại I. Tính bán kính đường tròn nhỏ biết IA = 3cm, IB = 9cm.
Bài 9.Cho ba đường tròn O O O1 2 3( ),( ),( )cùng có bán kính R và tiếp xúc ngoài nhau từng đôi một. Tính diện tích tam giác có ba đỉnh là ba tiếp điểm.
Bài 10.Cho hai đường tròn (O) và (O) tiếp xúc nhau tại A. Qua A vẽ một cát tuyến cắt đường tròn (O) tại B và cắt đường tròn (O) tại C. Từ B vẽ tiếp tuyến xyvới đường tròn (O). Từ C vẽ đường thẳng uv song song với xy. Chứng minh rằng uvlà tiếp tuyến của đường tròn (O).
Bài 11.Cho hình vuông ABCD. Vẽ đường tròn (D; DC) và đường tròn (O) đường kính BC, chúng cắt nhau tại một điểm thứ hai là E. Tia CE cắt AB tại M, tia BE cắt AD tại N. Chứng minh rằng:a) N là trung điểm của AD.b) M là trung điểm của AB.
Bài 12.Cho góc vuông xOy. Lấy các điểm I và K lần lượt trên các tia Oxvà Oy. Vẽ đường tròn (I; OK) cắt tia Oxtại M (I nằm giữa O và M). Vẽ đường tròn (K; OI) cắt tia Oytại N (K nằm giữa O và N).
a) Chứng minh hai đường tròn (I) và (K) luôn cắt nhau.
b) Tiếp tuyến tại M của đường tròn (I) và tiếp tuyến tại N của đường tròn (K) cắt nhau tại C. Chứng minh tứ giác OMCN là hình vuông.
c) Gọi giao điểm của hai đường tròn (I), (K) là A và B. Chứng minh ba điểm A, B, C thẳng hàng.d) Giả sử I và K theo thứ tự di động trên các tia Oxvà Oysao cho OI + OK = a(không đổi). Chứng minh rằng đường thẳng AB luôn đi qua một điểm cố định.
Cho hai đường tròn (O; R) và (O'; r) tiếp xúc ngoài (R > r). Hai tiếp tuyến chung AB và A'B' của hai đường tròn (O),(O') cắt nhau tại P(A và A' thuộc đường tròn (O'), B và B' thuộc đường tròn (O)). Biết PA = AB = 4 cm. Tính diện tích hình tròn (O').
(O; R) và (O’; R’) tiếp xúc ngoài với nhau
⇒ OO’ = R + r.
O’A ⊥ BP, OB ⊥ BP ⇒ O’A // OB
⇒ ΔPAO’ ΔPBO
⇒ OB = 2.O'A hay R = 2.r
và OP = 2.O’P ⇒ O’P = OO’ = R + r = 3.r
ΔO’AP vuông tại A nên:
O ’ P 2 = O ’ A 2 + A P 2
⇔ ( 3 r ) 2 = r 2 + 4 2 ⇔ 8 r 2 = 16 ⇔ r 2 = 2
Diện tích hình tròn (O’; r) là: S = π . r 2 = 2 π ( c m 2 ) .
Cho hai đường tròn (O; R) và (O'; r) tiếp xúc ngoài (R > r). Hai tiếp tuyến chung AB và A'B' của hai đường tròn (O),(O') cắt nhau tại P(A và A' thuộc đường tròn (O'), B và B' thuộc đường tròn (O)). Biết PA = AB = 4 cm. Tính diện tích hình tròn (O').
(O; R) và (O’; R’) tiếp xúc ngoài với nhau
⇒ OO’ = R + r.
O’A ⊥ BP, OB ⊥ BP ⇒ O’A // OB
⇒ ΔPAO’ ΔPBO
⇒ OB = 2.O'A hay R = 2.r
và OP = 2.O’P ⇒ O’P = OO’ = R + r = 3.r
ΔO’AP vuông tại A nên: O ' P 2 = O ' A 2 + A P 2
⇔ ( 3 r ) 2 = r 2 + 4 2 ⇔ 8 r 2 = 16 ⇔ r 2 = 2
Diện tích hình tròn (O’; r) là: S = π · r 2 = 2 π cm 2