Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
✿.。.:* ☆:**:.Lê Thùy Lin...
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 11 2023 lúc 21:13

a: Sửa đề: A,B,M,O

Xét tứ giác BMOA có

\(\widehat{BMO}+\widehat{BAO}=90^0+90^0=180^0\)

=>BMOA là tứ giác nội tiếp

=>B,M,O,A cùng thuộc một đường tròn

b: Xét (O) có

BA,BM là tiếp tuyến

Do đó: BA=BM và OB là phân giác của \(\widehat{AOM}\)

=>\(\widehat{AOM}=2\cdot\widehat{AOB}\)

Xét (O) có

CA,CN là tiếp tuyến

Do đó: CA=CN và OC là phân giác của \(\widehat{AON}\)

=>\(\widehat{AON}=2\cdot\widehat{AOC}\)

\(\widehat{AON}+\widehat{AOM}=180^0\)(hai góc kề bù)

=>\(2\cdot\widehat{AOC}+2\cdot\widehat{AOB}=180^0\)

=>\(2\cdot\widehat{BOC}=180^0\)

=>\(\widehat{BOC}=90^0\)

Xét ΔOBC vuông tại O có OA là đường cao

nên \(OA^2=AB\cdot AC\)

mà AB=BM và AC=CN

nên \(OA^2=BM\cdot CN\)

c: BA=BM

=>B nằm trên đường trung trực của AM(1)

OA=OM

=>O nằm trên đường trung trực của AM(2)

Từ (1) và (2) suy ra BO là đường trung trực của AM

=>BO\(\perp\)AM tại trung điểm của AM

=>BO\(\perp\)AM tại H và H là trung điểm của AM

CA=CN

=>C nằm trên đường trung trực của AN(3)

OA=ON

=>O nằm trên đường trung trực của AN(4)

Từ (3) và (4) suy ra CO là đường trung trực của AN

=>CO\(\perp\)AN tại trung điểm của AN

=>CO\(\perp\)AN tại K và K là trung điểm của AN

Xét tứ giác AHOK có \(\widehat{AHO}=\widehat{AKO}=\widehat{HOK}=90^0\)

nên AHOK là hình chữ nhật

 

Đặng Thiên Long
Xem chi tiết
tuongvy nguyen
Xem chi tiết
Đỗ Quang Phi
Xem chi tiết
Nguyễn Kiều Anh
Xem chi tiết
Hà Lê
Xem chi tiết
Nguyễn Thanh Thanh
Xem chi tiết
Ánh Hồng
Xem chi tiết
Lê Bách
Xem chi tiết
Vũ Như Mai
7 tháng 4 2017 lúc 16:56

Bạn vẽ hình ra đi dc ko?!