Cho đường tròn (O) điểm A nằm bên ngoài đường tròn.Kẻ các tiếp tuyến AM,AN với M,N là tiếp điểm.
Biết OM=3cm;OA=5cm.Khi đó AM=AN=.......
Cho đường tròn tâm O điểm A nằm bên ngoài đường tròn.Kẻ các tiếp tuyến AM,ANvới đường tròn (M,N là tiếp điểm).Biết OM=3cm,OA=5cm.Khi đó MN=...
Cho đường tròn tâm O điểm A nằm bên ngoài đường tròn.Kẻ các tiếp tuyến AM,ANvới đường tròn (M,N là tiếp điểm).Biết OM=3cm,OA=5cm.Khi đó MN=
(Nhập kết quả dưới dạng số thập phân gọn nhất)
Cho đường tròn tâm O điểm A nằm bên ngoài đường tròn.Kẻ các tiếp tuyến AM,ANvới đường tròn (M,N là tiếp điểm).Biết OM=3cm,OA=5cm.Khi đó MN=...?
(Nhập kết quả dưới dạng số thập phân gọn nhất)
Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AM, AN với đường tròn (M, N là các tiếp điểm). Tính độ dài các cạnh của tam giác AMN biết OM = 3cm, OA = 5cm
Ta có: AN ⊥ NC (tính chất tiếp tuyến)
Áp dụng định lí Pitago vào tam giác vuông AON ta có :
A O 2 = A N 2 + O N 2
Suy ra : A N 2 = A O 2 - O N 2 = 5 2 - 3 2 = 16
AN = 4 (cm)
Suy ra: AM = AN = 4 (cm)
Gọi H là giao điểm của AO và MN
Ta có: MH = NH = MN/2 (tính chất tam giác cân)
Tam giác AON vuông tại N có NH ⊥ AO. Theo hệ thức lượng trong tam giác vuông, ta có:
OA.NH = AN.ON ⇒ NH = (AN.ON)/AO = (4.3)/5 = 2,4 (cm)
MN = 2.NH = 2.2,4 = 4,8 (cm)
Cho đường tròn (O), đểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AM, AN với đường tròn (M,N là các tiếp điểm) a) Chứng minh: OAMN b) Vẽ đường kính NOC. Chứng minh: MC // AO c) Tính chu vi AMN biết OM= 3cm và OA = 5cm
a) Xét (O) có
AM là tiếp tuyến có M là tiếp điểm(gt)
AN là tiếp tuyến có N là tiếp điểm(gt)
Do đó: AM=AN; OM=ON(Tính chất hai tiếp tuyến cắt nhau)
Ta có: AM=AN(cmt)
nên A nằm trên đường trung trực của MN(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: OM=ON(cmt)
nên O nằm trên đường trung trực của MN(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AO là đường trung trực của MN
hay AO⊥MN(đpcm)
b) Xét (O) có
ΔMNC nội tiếp đường tròn(C,M,N∈(O))
NC là đường kính
Do đó: ΔMNC vuông tại M(Định lí)
⇒MN⊥MC
Ta có: MN⊥MC(cmt)
MN⊥AO(cmt)
Do đó: MC//AO(Định lí 1 từ vuông góc tới song song)
c) Áp dụng định lí Pytago vào ΔOMA vuông tại M, ta được:
\(OA^2=OM^2+MA^2\)
\(\Leftrightarrow AM^2=OA^2-OM^2=5^2-3^2=16\)
hay \(AM=\sqrt{16}=4cm\)
mà AM=AN(cmt)
nên AN=4cm
Gọi H là giao điểm của MN và AO
mà MN⊥AO tại trung điểm của MN
nên H là trung điểm của MN và MH⊥AO tại H
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAMO vuông tại M, ta được:
\(MH\cdot AO=MO\cdot MA\)
\(\Leftrightarrow MH\cdot5=4\cdot3=12\)
hay MH=2,4cm
mà \(MN=2\cdot MH\)(H là trung điểm chung của MN)
nên \(MN=2\cdot2.4=4.8cm\)
Chu vi tam giác AMN là:
\(C=AM+AN+MN=5+5+4.8=14.8cm\)
Cho đường tròn tâm O.Điểm A nằm bên ngoài đường tròn.Kẻ 2 tiếp tuyến AM,AN với đường tròn(MN là các tiếp điểm)
a)CM OA vuông góc với MN
b)Kẻ đường kính NOC.cmr MC//AO
C)Tính độ dài các cạnh tam giác AMN biết OM=3;OA=5cm
a,theo t/c 2 tiếp tuyến cắt nhau thì \(MA=NA\Rightarrow\Delta AMN\) cân và \(OA\) la p/g cua goc MAN \(\Rightarrow AO\) là dg p/g đóng vai vai trò đg cao \(\Rightarrow AO\perp MN\)
b,tam giác CMN có CN là đg kính nên tam giác CMN là tam giác vuông nên goc CMO +goc OMN =90 mat khác góc OMN+góc AOM =90 (MN \(\perp\) OA)\(\Rightarrow\)góc CMO =goc AOM(cùng phụ góc OMN) ở vị trí so le trong nên MC song song voi AO
C,xet \(\Delta OMA\) có \(AM=\sqrt{OA^2-OM^2}=\sqrt{5^2-3^2}=4\Rightarrow AN=AM=4\)
va MH=\(\frac{MA.MO}{OA}=\frac{4.3}{5}=2.4\Rightarrow MN=2MH=4.8\)
mình làm có gì sai mong bạn bỏ qua
cho đường tròn (O;R) ,điểm A nằm bên ngoài đường tròn .kẻ các tiếp tuyến AM,AN với đường tròn (O;R) (với M,N là các tiếp điểm)
a. nếu cho R=3cm và AO=5cm.tính chu vi tứ giác AMON và MN
b. từ O kẻ đường thẳng d vuông góc với OM.đường thẳng d cắt AN tại S.cm SA=SO
a: Gọi giao điểm của MN với OA là H
Xét (O) có
AM,AN là tiếp tuyến
Do đó: AM=AN và AO là phân giác của \(\widehat{MAN}\)
AO là phân giác của góc MAN
=>\(\widehat{MAO}=\widehat{NAO}\)
OM=ON
=>O nằm trên đường trung trực của MN(1)
AM=AN
=>A nằm trên đường trung trực của MN(2)
Từ (1) và (2) suy ra AO là đường trung trực của MN
=>AO vuông góc với MN tại trung điểm của MN
=>AO vuông góc với MN tại H và H là trung điểm của MN
ΔAMO vuông tại M
=>\(MA^2+MO^2=OA^2\)
=>\(MA^2+3^2=5^2\)
=>\(MA^2=5^2-3^2=16\)
=>MA=4(cm)
Chu vi tứ giác OMAN là:
OM+MA+AN+ON
=3+4+4+3
=6+8=14(cm)
Xét ΔOMA vuông tại M có MH là đường cao
nên \(MH\cdot OA=MO\cdot MA\)
=>\(MH\cdot5=3\cdot4=12\)
=>MH=2,4(cm)
H là trung điểm của MN
=>MN=2*MH
=>MN=2*2,4
=>MN=4,8(cm)
b: SO\(\perp\)OM
MA\(\perp\)OM
Do đó: SO//MA
=>\(\widehat{SOA}=\widehat{MAO}\)
mà \(\widehat{MAO}=\widehat{NAO}\)(cmt)
nên \(\widehat{SOA}=\widehat{MAO}=\widehat{NAO}\)
=>\(\widehat{SOA}=\widehat{SAO}\)
=>SA=SO
Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AM, AN với đường tròn (M, N là các tiếp điểm). Chứng minh rằng OA ⊥ MN
Ta có: AM = AN (tính chất hai tiếp tuyến cắt nhau)
Suy ra tam giác AMN cân tại A
Mặt khác AO là đường phân giác của góc MAN (tính chất hai tiếp tuyến cắt nhau)
Suy ra AO là đường cao của tam giác AMN (tính chất tam giác cân)
Vậy OA ⊥ MN.
Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AM, AN với đường tròn (M,N là các tiếp điểm). Vẽ đường kính NOC. Chứng minh rằng AM//CN.