cho hình thang cân ABCD có M;N lần lượt là trung điểm của AD và BC, vẽ AH vuông góc với đáy lớn CD tại H biết AH=10cm. tính MN biết AC vuông góc với BD
Cho hình thang ABCD có A=120, B=2C. C/m hình thang ABCD là hình thang cân
Bài 1: Cho hình thang cân ABCD ( AB// CD ) có góc A= 2 góc C. Tính số đo các góc hình thang
Bài 2: Cho hình thang cân ABCD ( AB// CD ) có góc A= 3 góc D. Tính số đo các góc của hình thang
Bài 3: Cho hình tam giác ABC cân tại A. Qua điểm M trên cạnh AB kẻ đường thằng song song với BC cắt cạnh ACtại N
1, Tứ giác BMNC là hình gì? Vì sao?
2, So sánh diện tích MNB và diện tích MNC
3, CM diện tích ABN= diện tích ACM
Bafi1: Do AB // CD ( GT )
⇒ˆA+ˆC=180o
⇒2ˆC+ˆC=180o
⇒3ˆC=180o
⇒ˆC=60o
⇒ˆA=60o.2=120o
Do ABCD là hình thang cân
⇒ˆC=ˆD
Mà ˆC=60o
⇒ˆD=60o
AB // CD ⇒ˆD+ˆB=180o
⇒ˆB=180o−60o=120o
Vậy ˆA=ˆB=120o;ˆC=ˆD=60o
Bài 2:
Ta có; AB//CD
\(\Rightarrow\)góc BAD+ góc ADC= \(180^o\)
^A=3. ^D \(\Rightarrow\)\(\dfrac{A}{3}\)=^D
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{A}{3}=\dfrac{D}{1}=\dfrac{A+D}{3+1}=\dfrac{180^O}{4}=45^O\)
\(\Rightarrow\)^A= \(135^O\)
\(\Rightarrow\)^D=\(45^o\)
\(\Rightarrow B=A=135^o\)
\(\Rightarrow C=D=45^o\)
Cho hình thang ABCD ( AB // CD ) có O là giao điểm 2 đường chéo biết rằng OC = OD . C/m ABCD là hình thang cân
Xét ΔOCD và ΔOAB có
góc OCD=góc OAB
góc COD=góc AOB
=>ΔOCD=ΔOAB
=>OC/OA=OD/OB
mà OC=OD
nên OA=OB
OA+OC=AC
OB+OD=BD
mà OA=OB và OC=OD
nên AC=BD
=>ABCD là hình thang cân
cho hình thang ABCD ( AB//CD),có AC = BD.C/m ABCD là hthang cân
Kẻ BE//AC, E thuộc CD
Xét tứ giác ABEC có
AB//EC
AC//BE
=>ABEC là hình bình hành
=>AC=BE
=>BE=BD
=>ΔBED cân tại B
=>góc BDE=góc BED
=>góc BDE=góc BAC
Xét tứ giác ABCD có góc BDC=góc BAC
nên ABCD là tứ giác nội tiếp
=>góc BAD+góc BCD=180 độ
mà góc ADC+góc BAD=180 độ
nên góc ADC=góc BCD
=>ABCD là hình thang cân
Bài 1. Cho hình thang cân ABCD (AB\\CD), A=3D. Tính các góc của hình thang cân.
Bài 2.Cho hình thang cân ABCD (AB\\CD) có O là giao điểm hai đường chéo. Chứng minh OA = OB, OC = OD.
Bài 3.Cho tam giác ABC cân tại A. Trên cạnh AB, AC lấy điểm M, N sao cho BM = CN.
a) Chứng minh BMNC là hình thang cân.
b) Tính các góc tứ giác BMNC biết góc A=400
Bài 4. Cho hình thang cân ABCD (AB\\CD) có AB=8cm, BC=AD=5cm, CD=14cm. Kẻ các đường cao AK và BH.
a) Chứng minh rằng CH=DK.
b) Chứng minh: CD-AB=2AK. Từ đó tính độ dài BH.
c) Tính diện tích hình thang ABCD.
Bài 5. Hình thang cân ABCD có đáy nhỏ AB bằng cạnh bên BC. Chứng minh CA là tia phân giác của góc BCD.
Bài 5:
Xét ΔBAC có BA=BC
nên ΔBAC cân tại B
Suy ra: \(\widehat{BAC}=\widehat{BCA}\)
mà \(\widehat{BAC}=\widehat{ACD}\)
nên \(\widehat{ACB}=\widehat{ACD}\)
hay CA là tia phân giác của \(\widehat{BCD}\)
Cho hình thang ABCD (AB//CD) có 2 đường chéo AC và BD cắt nhau tại I và có IA=IB. C/m ABCD là hình thang cân
\(\Delta IAB\)cân tại I nên \(\widehat{IAB}=\widehat{IBA}\)( tính chất tam giác cân )
AB // CD (gt) \(\Rightarrow\hept{\begin{cases}\widehat{IAB}=\widehat{ICD}\\\widehat{IBA}=\widehat{IDC}\end{cases}\left(SLT\right)}\)
Do đó: \(\widehat{ICD}=\widehat{IDC}\Rightarrow\Delta ICD\)cân tại I \(\Rightarrow IC=ID\)( định nghĩa )
Ta có: \(IA+IC=IB+ID\Rightarrow AC=BD\)
Hình thang ABCD có AB // CD và 2 đường chéo AC, BD bằng nhau
Vậy ABCD là hình thang cân.
Chúc bạn học tốt.
Bài 1. Cho hình thang cân ABCD (AB\\CD), A=3D. Tính các góc của hình thang cân.
Bài 2. Cho tam giác cân ABC cân tại A có BH và CK là hai đường cao của tam giác. Chứng minh BCHK là hình thang cân.
Bài 3.Cho hình thang cân ABCD (AB\\CD) có O là giao điểm hai đường chéo. Chứng minh OA = OB, OC = OD.
Bài 4.Cho tam giác ABC cân tại A. Trên cạnh AB, AC lấy điểm M, N sao cho BM = CN.
a) Chứng minh BMNC là hình thang cân.
b) Tính các góc tứ giác BMNC biết góc A=400
Bài 5. Cho hình thang cân ABCD (AB\\CD) có AB=8cm, BC=AD=5cm, CD=14cm. Kẻ các đường cao AK và BH.
a) Chứng minh rằng CH=DK.
b) Chứng minh: CD-AB=2AK. Từ đó tính độ dài BH.
c) Tính diện tích hình thang ABCD.
Bài 6. Hình thang cân ABCD có đáy nhỏ AB bằng cạnh bên BC. Chứng minh CA là tia phân giác của góc BCD.
Bài 6:
Xét ΔBAC có BA=BC
nên ΔBAC cân tại B
Suy ra: \(\widehat{BAC}=\widehat{BCA}\)
mà \(\widehat{BAC}=\widehat{ACD}\)
nên \(\widehat{ACB}=\widehat{ACD}\)
hay CA là tia phân giác của \(\widehat{BCD}\)
Bài 1. Cho hình thang cân ABCD (AB\\CD), A=3D. Tính các góc của hình thang cân.
Bài 2. Cho tam giác cân ABC cân tại A có BH và CK là hai đường cao của tam giác. Chứng minh BCHK là hình thang cân.
Bài 3.Cho hình thang cân ABCD (AB\\CD) có O là giao điểm hai đường chéo. Chứng minh OA = OB, OC = OD.
Bài 4.Cho tam giác ABC cân tại A. Trên cạnh AB, AC lấy điểm M, N sao cho BM = CN.
a) Chứng minh BMNC là hình thang cân.
b) Tính các góc tứ giác BMNC biết góc A=400
Bài 3:
Xét ΔACD và ΔBDC có
AC=BD
CD chung
AD=BC
Do đó: ΔACD=ΔBDC
Suy ra: \(\widehat{ACD}=\widehat{BDC}\)
hay \(\widehat{OCD}=\widehat{ODC}\)
Xét ΔODC có \(\widehat{OCD}=\widehat{ODC}\)
nên ΔODC cân tại O
Suy ra: OD=OC
Ta có: AO+OC=AC
OB+OD=BD
mà AC=BD
và OC=OD
nên OA=OB
Bài 2:
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{A}\) chung
Do đó: ΔAHB=ΔAKC
Suy ra: AH=AK và HB=KC
Xét ΔABC có
\(\dfrac{AK}{AB}=\dfrac{AH}{HC}\)
Do đó: KH//BC
Xét tứ gác BKHC có KH//BC
nên BKHC là hình thang
mà KC=BH
nên BKHC là hình thang cân
Bài 1. Cho hình thang cân ABCD (AB\\CD), A=3D. Tính các góc của hình thang cân.
Bài 2. Cho tam giác cân ABC cân tại A có BH và CK là hai đường cao của tam giác. Chứng minh BCHK là hình thang cân.
Bài 3.Cho hình thang cân ABCD (AB\\CD) có O là giao điểm hai đường chéo. Chứng minh OA = OB, OC = OD.
Bài 4.Cho tam giác ABC cân tại A. Trên cạnh AB, AC lấy điểm M, N sao cho BM = CN.
a) Chứng minh BMNC là hình thang cân.
b) Tính các góc tứ giác BMNC biết góc A=400
Bài 5. Cho hình thang cân ABCD (AB\\CD) có AB=8cm, BC=AD=5cm, CD=14cm. Kẻ các đường cao AK và BH.
a) Chứng minh rằng CH=DK.
b) Chứng minh: CD-AB=2AK. Từ đó tính độ dài BH.
c) Tính diện tích hình thang ABCD.
Bài 6. Hình thang cân ABCD có đáy nhỏ AB bằng cạnh bên BC. Chứng minh CA là tia phân giác của góc BCD.
Bài 2:
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{A}\) chung
Do đó: ΔAHB=ΔAKC
Suy ra: AH=AK
Xét ΔABC có
\(\dfrac{AK}{AB}=\dfrac{AH}{AC}\)
Do đó: HK//BC
Xét tứ giác BCHK có HK//BC
nên BCHK là hình thang
mà HB=KC(ΔAHB=ΔAKC)
nên BCHK là hình thang cân
Bài 3:
Xét ΔACD và ΔBDC có
AC=BD
CD chung
AD=BC
Do đó: ΔACD=ΔBDC
Suy ra: \(\widehat{ACD}=\widehat{BDC}\)
hay \(\widehat{OCD}=\widehat{ODC}\)
Xét ΔODC có \(\widehat{OCD}=\widehat{ODC}\)
nên ΔODC cân tại O
Suy ra: OD=OC
Ta có: AO+OC=AC
OB+OD=BD
mà AC=BD
và OC=OD
nên OA=OB
Cho hình thang ABCD có CD=BC+AD, CMR Hình thang ABCD là hình thang cân