Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lương Huyền Trang 6a1
Xem chi tiết
Bùi Trầng Hương Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 7 2023 lúc 0:05

5: 

a: Xét ΔANB và ΔAMC có

AN=AM

góc BAN chung

AB=AC

=>ΔANB=ΔAMC

b: Xét ΔABC có AN/AC=AM/AB

nên MN//BC

c: góc ABN+góc IBC=góc ABC

góc ACM+góc ICB=góc ACB

mà góc ABN=góc ACM và góc ABC=góc ACB

nên góc IBC=góc ICB

=>IB=IC

mà AB=AC

nên AI là trung trực của BC

=>A,I,D thẳng hàng

Nguyễn Bá Long Nhật
Xem chi tiết
Vu luong vu
20 tháng 5 2020 lúc 21:17

Tam giác ABC có góc B = 900, góc ACB = 300.

Suy ra góc A = 1800 - góc B - góc ACB = 180 - 90 - 30 = 600.

Mà AD là tia phân giác của góc A -> góc DAB=góc DAE = góc A / 2 = 602=30602=300

mà góc ABD bằng 900 -> góc ADB = 1800-900-300=600.

Vậy góc ADB bằng 600.

 Xét hai tam giác BDA và tam giác EDA có :

AB = AE (GT)

góc BAD = góc EAD (cmt)

AD chung

Từ ba điều trên suy ra : tam giác BDA = tam giác EDA.

 Ta có : góc DAE bằng = 300 (cmt)

mà góc ACB bằng 300 (GT)

Từ hai điều trên suy ra tam giác DAC cân tại D.

-> DA = DC (đpcm).

Khách vãng lai đã xóa
Nguyễn Bá Long Nhật
Xem chi tiết
cường nguyễn văn
Xem chi tiết
lê nguyễn tấn phát
Xem chi tiết
đặng lâm anh
Xem chi tiết
phan tuấn anh
Xem chi tiết
To Bao Chau
Xem chi tiết

a: Xét tứ giác ADHE có \(\hat{ADH}=\hat{AEH}=\hat{DAE}=90^0\)

nên ADHE là hình chữ nhật

Xét ΔDHA vuông tại D và ΔDBH vuông tại D có

\(\hat{DHA}=\hat{DBH}\left(=90^0-\hat{DHB}\right)\)

Do đó: ΔDHA~ΔDBH

=>\(\frac{DH}{DB}=\frac{DA}{DH}\)

=>\(DA\cdot DB=DH^2\)

Xét ΔEAH vuông tại E và ΔEHC vuông tại H có

\(\hat{EAH}=\hat{EHC}\left(=90^0-\hat{EHA}\right)\)

Do đó: ΔEAH~ΔEHC

=>\(\frac{EA}{EH}=\frac{EH}{EC}\)

=>\(EA\cdot EC=EH^2\)

ADHE là hình chữ nhật

=>\(HE^2+HD^2=HA^2\)

=>\(DA\cdot DB+EA\cdot EC=HA^2\)

Xét ΔBDH vuông tại D và ΔBHA vuông tại H có

góc DBH chung

Do đó: ΔBDH~ΔBHA

=>\(\frac{BD}{BH}=\frac{BH}{BA}\)

=>\(BD\cdot BA=BH^2\)

Xét ΔCEH vuông tại E và ΔCHA vuông tại H có

\(\hat{ECH}\) chung

DO đó: ΔCEH~ΔCHA

=>\(\frac{CE}{CH}=\frac{CH}{CA}\)

=>\(CE\cdot CA=CH^2\)

Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

\(\hat{HAB}=\hat{HCA}\left(=90^0-\hat{HBA}\right)\)

Do đó: ΔHAB~ΔHCA

=>\(\frac{HA}{HC}=\frac{HB}{HA}\)

=>\(HA^2=HB\cdot HC\)

\(BD\cdot BA+CE\cdot CA=BH^2+CH^2\)

\(=BH^2+CH^2+2\cdot HB\cdot HC-2\cdot HB\cdot HC\)

\(=\left(BH+CH\right)^2-2\cdot AH^2=BC^2-2\cdot AH^2\)

\(=AB^2+AC^2-2\cdot AH^2\)

b: Ta có: \(AD\cdot AB=AE\cdot AC\)

=>\(\frac{AD}{AC}=\frac{AE}{AB}\)

Xét ΔADE vuông tại A và ΔACB vuông tại A có

\(\frac{AD}{AC}=\frac{AE}{AB}\)

Do đó: ΔADE~ΔACB

=>\(\hat{AED}=\hat{ABC};\hat{ADE}=\hat{ACB}\)

ΔABC vuông tại A

mà AM là đường trung tuyến

nên AM=MB=MC

MA=MC

=>ΔMAC cân tại M

=>\(\hat{MAC}=\hat{MCA}\)

\(\hat{MAC}+\hat{AED}=\hat{ABC}+\hat{ACB}=90^0\)

=>AM⊥DE tại S

c: ta có: \(\hat{CAF}+\hat{BAF}=\hat{CAB}=90^0\)

\(\hat{CFA}+\hat{HAF}=90^0\) (ΔHAF vuông tại H)

\(\hat{BAF}=\hat{HAF}\) (AF là phân giác của góc BAH)

nên \(\hat{CAF}=\hat{CFA}\)

=>CA=CF

Ta có: \(\hat{BAJ}+\hat{CAJ}=\hat{BAC}=90^0\)

\(\hat{BJA}+\hat{HAJ}=90^0\) (ΔHAJ vuông tại H)

\(\hat{CAJ}=\hat{HAJ}\) (AJ là phân giác của góc HAC)

nên \(\hat{BAJ}=\hat{BJA}\)

=>BA=BJ

AB+AC

=BJ+CF

=BF+FJ+CJ+JF

=BF+CJ+FJ+JF

=BC+FJ