cho hinh thang ABCD vuong tai A va D co AB=2CD.Goi H la hinh chieu cua D tren AC .Goi m,n la trung diem cua HC va HD ;MN=AB Chứng minh MN vuông góc với AD
Cho tam giac ABC vuong tai A, duong cao AH chia canh huyen thanh hai doan BH va HC lan luot la 4 cm va 9 cm. Goi D va E lan luot la hinh chieu cua H tren canh AB va AC.
a, tinh do dai doan thang DE
b, cac duong thang vuong goc voi DE tai D va E lan luot cat BC tai M va N. Chung minh M la trung diem cua BH va N la trung diem cua CH
c, tinh diem tich tu giac DEMN
a) theo hệ thức về cạnh và đường cao trong tam giác vuông có:
AH^2=BH*HC
hay AH^2=4*9
AH^2=36
=>AH=6cm
ADHE có gócD=gócA=gócE=90độ
=>ADHE là hình chữ nhật
=>AH=DE=6cm (2 đường chéo của hcn)
Cho ∆ABC vuong tai A goi M la trung diem cua BC. Goi D va E lan luot la chan duong vuong goc ke tu B va C den duong thang AM.
a, c/m BD= CE
b,c/m BE//CD
C, goi N,H lan luot la hinh chieu cua M tren AC va AB, MH cat BD tai I. Chung minh rang ba duong thang MN; AI va CE cung di qua mot diem .
.
a, xét tam giác BDM và tam giác CEM có:
BM=CM(gt)
\(\widehat{BMD}\)=\(\widehat{CME}\)(vì đối đỉnh)
\(\Rightarrow\)tam giác BDM=tam giác CEM( CH-GN)
b, xét tam giác BEM và tam giác CDM có
BM=CM
\(\widehat{CMD}\)=\(\widehat{BME}\)(đối đỉnh)
MD=ME(theo câu a)
\(\Rightarrow\)\(\Delta\)BEM=\(\Delta\)CDM(c.g.c)
\(\Rightarrow\)\(\widehat{MCD}\)=\(\widehat{MBE}\) mà 2 góc này ở vị trí so le trong nên BE//CD
c) Xét tam giác ABM có: MH vuông AB, BD vuông AM
Mà BD cắt MH tại I
=> I là trực tâm
Gọi J là giao của AI và BC khi đó:
AJ vuông BC
Xét 2 tam giác vuông AJM vàCEM có:
AM=MC(=1/2BC)( vì tam giác ABC vuông thì trung tuyến bằng 1/2 cạnh huyền)
góc IMA=góc EMC
=> Tam giác ẠM=tam giác CEM
=> \(\widehat{JAM}=\widehat{ECM}\) mặt khác MA=MC=> tam giác MAC cân => \(\widehat{MAN}=\widehat{MCN}\)
từ đó suy ra \(\widehat{IAN}=\widehat{ECN}\)
Gọi K là giao điểm của AI và CE
=> tam giác KAC cân
=> KA=KC
=> K nằm trên đường trung trực AC
Mặc khác MN là đường cao của tam giác cân MAC
=> MN là đường trung trực của AC
=> MN qua K
vậy MN, AI và CE đồng quy tại K
=>
cho tam giac abc vuong tai a co d la trung diem bc. Goi m la diem doi xung cua d qua ab, e la giao diem cua dm va ab. Goi n la diem doi xung cua d qua ac, f la giao diem cua dn va ac
a/ chung minh aedf la hcn
b/ chung minh adbm la hinh thoi
c/chung minh ba diem m,n,a thang hang
d/tam giac abc co dieu kien gi de aedf la hinh vuong
DE là đg đx nên DE vuông góc với AB nên E là góc vuông
df là đg đx nên DF vuông góc với AC nên F là góc vuông.
tứ giác AEDM có E,A,F là góc vuông nên là HCN.
.làm vội k bít đúng k
Cho tam giac ABC vuong tai A (AB<AC),ke AH vuong goc BC tai H.Tren tia HC lay diem D sao cho HD=HB.Goi P,Q theo thu tu la hinh chieu cua D tren AC,AB
1,CM rang tu giac APDQ la hinh chu nhat
2,Goi K la giao diem cua AD va PQ .CM rang HK=\(\dfrac{1}{2}\)AD
3,Duong thang DP cat AH tai E, ve hinh chu nhat ABGC.CM BEGC la hinh thang can
1: Xét tứ giác AQDP có
góc AQD=góc APD=góc PAQ=90 độ
nên AQDP là hình chữ nhật
2: Vì AQDP là hình chữ nhật
nên AD cắt QP tại trung điểm của mỗi đường
=>K là trung điểm của AD
ΔDHA vuông tại H
mà HK là trung tuyến
nên HK=AD/2
Cho tam giac ABC vuong tai A co AB<AC;duong cao AH .Goi I la hinh chieu cua H tren AB ; tren tia HI lay diem D sao cho I la trung diem DH
a,CM tam giac ADI=tam giac AHI
b,CM AD vuong goc voi BD
c,Cho biet BH=9cmva CH=16cm.Tinh AH
d ,Goi K la hinh chieu cua H tren AC.Tren tia doi cua tia KH lay diem E sao cho EK=HK.CM D,E,A thang hang va DE<DB+CE
a: Xét ΔADI vuông tại I và ΔAHI vuông tạiI có
AI chung
DI=HI
Do đó: ΔADI=ΔAHI
b: Xét ΔAHB và ΔADB có
AH=AD
góc HAB=góc DAB
AB chung
Do đó: ΔAHB=ΔADB
Suy ra: góc AHB=góc DHB=90 độ
hay AD vuông góc với BD
c: \(AH=\sqrt{HB\cdot HC}=12\left(cm\right)\)
Cho tam giac abc can tai A co 2 duong trung tuyen BM va CN
a)Chung Minh tu giac bcnm la hinh thang can
b)ke duong thang di qua m va song song voi CN cat BC tai D . CM tu giac NMDC la Hinh binh hanh
c) CM tam giac BMD la tam giac can va BD=3MN
d) goi AH la duong cao cua tam giac ABC va Q la diem doi xung voi H qua N. CM tu giac AHBQ la Hinh chu nhat
e) goi k la Hinh chieu cua H tren AC va I la Trung diem cua HK. Chung Minh AI vuong goc voi BK
cho tam giac ABC co AB =6 ,AC=8, BC=10. goi K la trung diem cua doan thang BC ,duong trung truc cua doan thang BC cat AC tai M . goi D la hinh chieu vuong goc cua C tren duong thang BM chung minh rang : tam giac ABC vuong tai A
Cho tam giac ABC vuong tai A (AB<AC),duong cao AH.Goi O la trung diem cua BC,D la diem doi xung cu A qua O
a)Chung minh ABDC la hinh chu nhat
b)Tren tia doi cua tia HA lay diem E sao cho HE=HA.Chung minh tam giac AED vuong va BE vuong goc voi voi CE
c) Goi M,N lan luot la hinh chieu cua E len BD va CD,EM cD tai K.Chung minhDE=DK
d)CM :H,M,N thang hang
giup mik nha moi nguoi
giup mik i
moi nguoi
please
cho tam giac abc co AB<AB goi D,E,F lan luot la trung diem cua AB AC BC ke AH vuong goc voi BC tai H chung minh DM song song BH chung minh M la trung diem AH va tam giac EAH can tren tia doi cua DH lay diem k sao cho dh = dk chung minh tu giac defa la hinh thang can va tu giac kacb la hinh thang vuong