Cho tam giác MnQ nhọn; MN < MQ. Hai đường cao NK và QE cắt nhau tại H.
a)Cm: \(\Delta MNK\)\(\sim\)\(\Delta MQE\). Từ đó suy ra: MN.ME=MK.MQ
b)Cm: HQ.HE=HN.HK
c)Cm: \(\widehat{MNQ}\)=\(\widehat{MKE}\)
d)Cm: MH\(\perp\)NQ
e)Cm: IM là tia phân giác \(\widehat{KIE}\) với I là giao điểm MH và NQ