Cho tam giác ABC vuông tại A, đường cao AH. Gọi AD là tia phân giác của góc HAC. Biết BC=5cm; HD=1,2cm. Tính các cạnh còn lại của tam giác
cho tam giác abc vuông tại a đường cao ah , biết ab=15cm , ac=20cm a) cm tam giác hba đồng dạng tam giác abc . tam giác hac đồng dạng tam giác abc . b)tính ah,bh,ch . c) gọi bd là tia phân giác của góc abc . tính ad,dc . d)gọi e,f là chân đường vuông góc kẻ từ h xuống ad và ac . tứ giác aehf là hình gì . e)chứng minh ae.ab=af.ac
Vẽ dùm mình cái hình và phần e
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{15^2}+\dfrac{1}{20^2}=\dfrac{625}{90000}\)
\(\Leftrightarrow AH=12\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow BH^2=15^2-12^2=81\)
hay BH=9(cm)
Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+CH^2\)
\(\Leftrightarrow CH^2=AC^2-AH^2=20^2-12^2=256\)
hay CH=16(cm)
c) Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AD}{15}=\dfrac{CD}{25}=\dfrac{AD+CD}{15+25}=\dfrac{20}{40}=\dfrac{1}{2}\)
Do đó: AD=7,5cm; CD=12,5cm
Cho tam giác ABC vuông tại A dđường cao Ah gọi Ad là tia phân giác của góc HAC biết cạnh huyền BC=5 HD=1,2 tonhs các cạnh còn lại
Phân giác AD => AB/AC = BD/CD = 15/20 = 3/4
=> AB/3 = AC/4
=> AB29=AC216⇒AB2AC2=916 (1)
Ta có: AB^2 = BH * BC ; AC^2 = CH * BC (2)
(1), (2) => BHCH=916
Cũng có: BH + CH = BC = 35
=> BH = 35/ (9+ 16) * 9 = 12,6
=> CH = 22,4
=> AH^2 = BH * CH = 282,24
=> AH = 16,8
Ta có:
DH = BC - BH - CD = 35 - 12,6 - 20 = 2,4
=> AH * DH = 16,8 * 2,4 = 40,32
15/20 ở đau ra v bạn
cho tam giác ABC vuông tại A với đường cao AH. Gọi AD là tia phân giác của tam giác HAC hạ từ đỉnh A. Biết AC=8 cm, BC=17 cm. Độ dài BD là
Cho tam giác ABC vuông tại A có AB < AC.Vẽ đường cao AH của tam giác ABC,AD là tia phân giác góc HAC ( D thuộc HC).Vẽ DE vuông góc AC tại E
a) CMR : Tam giác ADH = tam giác ADE Từ đó => DH = DE
b) Gọi K là giao điểm AH và D.CMRTam giác DKC cân
c) Gọi F là trug điểm KC.CMR : A,D,F thẳng hàng
d)CMR : AH + BC > AB + AC
e) Gọi I là trực tâm Của tam giác BAD.ĐƯờng thẳng vuông góc với AD tại A cắt phân giác góc IDB tại T.CMR tam giác ADT là tam vuông cân
Mn giảng giúp em câu e với ạ
e: I là trực tâm của ΔBAD
=>DI vuông góc AB
=>DI//AC
=>góc BDI=góc ACB
DT là phân giác của góc IDB
=>góc TDI=góc TDB=1/2*góc BDI=1/2*góc ACB
DI//AC
=>góc IDA=góc DAC
AD là phân giác của góc HAC
=>góc DAC=1/2*góc HAC
=>góc IDA=1/2*góc HAC
góc HAC+góc ACB=90 độ
=>góc IDT+góc IDA=1/2*90=45 độ
=>góc TDA=45 độ
=>ΔTDA vuông cân
Cho tam giác ABC vuông tại A, đường cao AH(H thuộc BC). Gọi AD là tia phân giác của góc HAC (D thuộc AC), E là điểm trên cạnh AB sao cho BE=BH. Chứng minh EH song song AD
Cho tam giác ABC vuông tại A đường cao AH biết AB=3cm ; AC=4cm
a) Tính BC
b) Chứng minh tam giác HBA đồng dạng tam giác ABC ; tam giác HAC đồng dạng tam giác ABC .
c) Gọi AD là tia phân giác của góc A . Tính DB và DC
d) Gọi EF là hình chiếu của điểm H trên AB và AC . Tứ giác AEHF là hình gì ? Vì sao ?
e) Tính AH,BH,CH,EF
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=3^2+4^2=25\)
hay BC=5(cm)
b) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
Xét ΔHAC vuông tại H và ΔABC vuông tại A có
\(\widehat{C}\) chung
Do đó: ΔHAC\(\sim\)ΔABC(g-g)
d) Xét tứ giác AEHF có
\(\widehat{EAF}=90^0\)
\(\widehat{AEH}=90^0\)
\(\widehat{AFH}=90^0\)
Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
a. áp dụng định lý pytago vào tam giác vuông abc , có:
ab^2 +AC^2=BC^2
T/S:3^2+4^2=BC^2
\(\Rightarrow\)BC=5
XIN LỖI MIK CHỈ GIÚP ĐC CÂU A Ạ
Cho tam giác ABC vuông tại A, đường cao AH, tia phân giác góc HAC cắt BC tại D.
a. CMR tam giác ABD cân
b. Từ B kẻ đường thẳng vuông góc với AD cắt AC tại M. Chứng minh rằng MD//AH
c. Gọi E là giao điểm của AH và MB. CMR MD=AE
dễ quá k làm nx
Cho tam giác ABC vuông tại A, đường cao AH.
a) Chứng minh tam giác ABC đồng dạng với tam giác HBA, từ đó suy ra AB.AH = BH.AC
b) Tia phân giác của góc ABC cắt AH tại I. Biết BH = 3cm, AB = 5cm. Tính AI,HI
c) Tia phân giác góc HAC cắt BC tại K. Chứng minh IK // AC
tự kẻ hình
a, xét tam giác ABC và tam giác HBA có : góc B chung
góc BAC = góc BHA = 90
=> tam giác ABC đồng dạng với tam giác HBA (g-g)
=> AB/BH = AC/AH
=> AB.AH = BH.AC
b, xét tam giác BAH vuông tại H => HB^2 + HA^2 = AB^2 (Pytago)
BH = 3; AB = 5(gt)
=> 3^2 + AH^2 = 5^2
=> AH^2 = 16
=> AH = 4 do AH > 0
xét tam giác ABH có : BI là pg của góc ABH (gt)
=> AI/AB = IH/BH (tính chất)
=> AI+IH/AB+BH = AI/AB = IH/BH
=> AH/AB + BH = AI/AB = IH/BH
có: AH = 4; AB = 5; BH = 3
=> 4/3+5 = AI/5 = IH/3
=> AI/5 = IH/3 = 1/2
=> AI = 5/2 và IH = 3/2
c, góc CAH = 90 - góc HAB
góc HBA = 90 - góc HAB
=> góc CAH = góc HBA
xét tam giác AHC và tam giác BHA có: góc AHC = góc BHA = 90
=> tam giác AHC đồng dạng với tam giác BHA (g-g)
=> AC/AB = AH/HB
=> AC/AH = AB/HB
BI là pg của tam giác AHB => AI/AH = AB/AB
CK là pg của tam giác AHC => CK/KH = AC/AH
=> AI/AH = CK/KH
=> KI // AC
Cho tam giác ABC vuông tại A có AB < AC.Vẽ đường cao AH của tam giác ABC,AD là tia phân giác góc HAC ( D thuộc HC).Vẽ DE vuông góc AC tại E
a) CMR : Tam giác ADH = tam giác ADE Từ đó => DH = DE
b) Gọi K là giao điểm AH và D.CMRTam giác DKC cân
c) Gọi F là trug điểm KC.CMR : A,D,F thẳng hàng
d)CMR : AH + BC > AB + AC
e) Gọi I là trực tâm Của tam giác BAD.ĐƯờng thẳng vuông góc với AD tại A cắt phân giác góc IDB tại T.CMR tam giác ADT là tam vuông cân