Cho hình bình hành ABCD có DC=2AD=2a. Từ trung điểm I của Dc hạ IH vuông góc với AB tại H; DC cắt AI tại E.
a. chứng minh AE là phân giác của góc DAH
b. CHứng minh 1/AH^2 =1/AI^2 + 1/BI^2
c. cho góc ADC =30 độ. tính AI theo a.
Cho hình bình hành ABCD có DC = 2AD=2a. Từ trung điểm I của DC kẻ IH vuông góc với AB tại H, DH cắt AI tại E. CM: 1/IH^2=1/AI^2 + 1/BI^2
cho hình bình hành ABCD có AB=2AD=2a. Từ trung điểm I của AB hạ IH vuông góc với CD, DI cắt AH tại E
1)CM: tam giác ADI cân, từ đó => \(\dfrac{AE}{EH}=\dfrac{AD}{DH}\)
2)gọi K là trung điểm của CD, CM: AIKD là hình thoi
1: Ta có: \(AD=\dfrac{AB}{2}\)
\(AI=\dfrac{AB}{2}\)
Do đó: AD=AI
hay ΔADI cân tại A
Cho ABCD là hình bình hành,góc D = 60°, DC= 2AD, I là chung điểm của DC, HI vuông góc với AB, AK vuông góc với DC ( H€ AB, K € DC)
A) chứng ming IH=AK
B) tính IK,HB
Ai hộ e vs ạ 💋💋
cho hình bình hành ABCD có DC=2AD, từ trung điểm I của cạnh CD vẽ HI vuông góc với AB (H thuộc AB). Gọi E là gia điểm của AI và DH. CMR
a, DE/HE=DA/HA
b, 1/IH^2=1/IA^2+1/IB^2
Cho hình bình hành ABCD có DC=2AD, từ trung điểm I của CD vẽ HI vuông góc với AB (H thuộc AB). Gọi E là giao điểm của AI và DH. Chứng minh rằng:
\(a,\frac{DE}{HE}=\frac{DA}{HA}\)
\(b,\frac{1}{IH^2}=\frac{1}{IA^2}+\frac{1}{IB^2}\)
Cho hình bình hành ABCD có AB>AD. Từ A vẽ đường thẳng vuông góc với BD cắt DC tại H, từ C vẽ đường thẳng vuông góc với BD cắt AB tại K.
a, cm AHCK là hình bình hành
b,cm O là trung điểm của BD thì O cũng là trung điểm của HK
a: Xét tứ giác AHCK có
AH//CK
AK//CH
=>AHCK là hình bình hành
b: ABCD là hình bình hành
=>O là trung điểm chung của AC và BD
AHCK là hình bình hành
=>AC cắt HK tại trung điểm của mỗi đường
=>O là trung điểm của HK
Cho hình bình hành ABCD có góc A bằng 120 độ. Tia phân giác góc D đi qua trung điểm I của cạnh AB. Kẻ AH vuông góc với DC. Chứng minh:
a. AB=2AD
b. DI=2AH
c.AC vuông góc với AD
a)Ta có gAMD = gMDC (so le trong), mà gMDC = gADM (gt) => gADM = g AMD
=> tg ADM cân tai A => AD = AM = AB/2 hay AB = 2AD
b) Từ A hạ AI v^g góc với DM => I là trung điểm của DM và AI là phân giác của góc A (tc tg cân)
=> DM = 2 DI (1) và g DAI = 120/2 = 60 độ
Mặt khác gD + gA = 180 độ ( hai góc trong cùng phía, AB // DC) mà gA = 120 độ => gD = 60 độ
tg v^g DAI và tg v^g ADH có gDAI = gADH = 60 độ, AD là cạnh huyền chung
=> tg DAI = tg ADH ( cạnh huyền, góc nhọn)
=> AH = DI (2)
Từ (1) và (2) => DI = 2 AH
c) Gọi N là trung điểm của DC do Dc= AB nên AD = DC/ 2= DN => tg ADN cân tại D mà gD = 60 độ => tg ADN đều => AN = AD = DC/ 2
tg ADC có đường trung tuyến AN = DC/2 => tg ADC v^g tại A hay DA _|_ AC
Cho hình bình hành ABCD, góc A = 120 độ, phân giác góc D đi qua trung điểm I của AB.
a) Chứng minh AB=2AD.
b) Kẻ AH vuông góc với DC. Chứng minh DI=2AH.
c) Chứng minh AC vuông góc với AD.
a, Vì AB//CD => góc AID=gocIDC
Ma IDC=ADI => AID=ADI => AI=AD
MaAI=IB=1/2AB => 2AD=AB
Vi AB/CD
=>goc AID = goc IDC
Ma IDC= ADI
=> AID = ADI
=> AI = AD
Ma Ai = IB= 1/2 AB
=> 2 AD = AB
Cho hình bình hành ABCD, góc A= 120 độ. Phân giác góc D đi qua trung điểm I của AB.
a) Chứng minh AB=2AD.
b)Kẻ AH vuông góc vs DC. Chứng minh DI=2AH.
c) Chứng minh AC vuông góc với AD.