Cho tam giác ABC vuông cân tại A, M là trung điểm BC. Điểm D bất kì thuộc BM( D khác M;D). H và I thứ tự là hình chiếu của B và C xuống đường thẳng AD. Đường thẳng AM cắt CI tại N. Chứng minh rằng:
BH=AIBH^2+CI^2 có giá trị ko đổiIM là Pgiác góc HICCho tam giác ABC vuông cân tại A, m là điểm bất kì trên đoạn AC (M khác A, C). Kẻ AF vuông góc với BM, F thuộc BC. E là điểm thuộc đoạn BF sao cho EF=FC. Kẻ EI song song với BM, I thuộc BA. Tính góc AIM
Cho tam giác ABC vuông cân tại B, có trung tuyến BM. Gọi D là 1 điểm bất kì thuộc AC. Kẻ AH, CK vuông góc với BD.C/M:
a/ BH = CK
b/ Tam giác MHK vuông cân
a) xét 2 tg vuông BHA và CKB
có : BA = BC và
kéo dài CK cắt AB tại I ta có : g IBK = 90 - g BIK ( do tg IBK vuông tại K )
đồng thời tg IBC vuông tại B => g BCK = 90 - g BIK
==> g IBK = g BCK
nên tg BHA = tg CKB ==> HB = CK
b )
M là trung điểm của AC => BM vuông góc AC ( t/c tg cân )
tg AMB vuông tại M có g MAB = 45 độ nên vuông cân
=> MA = MB
tg MKB = tg MHB do có
MB = MA và BK = AH ( c/m a ) đồng thời
g MBK = g MAH ( cùng phụ với 2 góc đối đỉnh ở D )
==> MK = MH
g HMK = g HMA + AMK mà gHMK = g KMB ( do 2 tg bàng nhau vừa c/m )
nên g HMK = g KMB + g AMK = g AMB = 90 độ
==> MHK vuông cân
c) ta có
đường vuông góc CK < đường xiên CD => CK lớn nhất khi K trùng với D , lúc đó CK = CD
tuơng tự AH lớn nhất khi H trùng với D , lúc đó AH = AD
=> tổng lớn nhất khi khi K, H , D trùng nhau
==> g MAH = 0 độ ( do D thuộc AC)
nhưng theo c/m b
g MAH = g MBK ==> g MBK = 0 độ
==> g MBD = 0 độ nên D trùng với M
kết luận : để tổng lớn nhất thì nằm ngay vị trí của điểm M
lúc đó AH + CK = AC
1)cho tam giác ABC vuông cân tại A. M là trung điểm của BC. G thuộc AB sao cgo AG=\(\frac{1}{3}\)AB, E là chân đường vuông góc hạ từ M xuống CG. MG và AC cắt nhau tại D. so sánh DE và BC
2) cho tam giác ABC vuông tại A và \(\widehat{BAC}\)= 60' , M thuộc BC sao cho AB+BM=AC+CM. tính\(\widehat{CAM}\)
3) cho tam giác ABC cân tại A , gọi E là điểm bất kì nằm giữa B và C , đường thẳng qua E vuông góc với AB và đường thẳng qua C vuông góc với AC cắt nhau tại D. gọi K là trung điểm của BE. tính \(\widehat{AKD}\)
4)cho tam giác ABC cân tại A. trên đường thẳng AC lấy điểm M tùy ý.đường thẳng vuông góc với BC qua M cắt BC tại H. gọi I là trung điểm của BM. tính\(\widehat{HAI}\)
Cho tam giác ABC vuông cân tại A. Gọi E là trung điểm của BC. M là điểm bất kì thuộc cạnh BC (M khác E). Kẻ BH vuông góc với AM tại H và CK vuông góc với AM tại K.
a) Chứng minh △KAC = △HBA
b) Chứng minh AE vuông góc với BC.
c) Tam giác KEH là tam giác gì? Vì sao?
b: Ta có: ΔABC cân tại A
mà AE là đường trung tuyến
nên AE là đường cao
cho tam giác ABC vuông cân tại A. Gọi M là trung điểm BC , D là điểm thuộc đoạn BM [D khác B và M] CI lần lượt vuông góc với đường thẳng AD tại H và I.Chứng minh rằng góc BAM bằng góc ACM
sơ lược
CM: tgiacBAM= tgiacCAM=>^B=^C(1);BM=MA=>tgiacBAM cân tại A=>^B=^BAM(2),từ (1) (2)=> ^BAM=^ACM
Xét tg BAM và tg CAM t có
^B= ^C (a)
BM=MA ( vì tg BMA cân tại A)
=> ^B = ^BAM (b)
Từ a và b=> ^BAM = ^ACM
Cho tam giác ABC vuông tại B, có đường trung tuyến BM. Gọi D là 1 điểm bất kì thuộc cạnh AC. Kẻ AH; Ck vuông góc với BD. C/m
a) BH=CK
b)Tam giác MHK cân
c) Gọi I là giao điểm của BM và CK. Chứng minh tg MID cân
Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của BC, D là điểm thuộc BM (D khác B và M). Kẻ BH và CI lần lượt vuông góc với AD tại H và I. Chứng minh :
a) Góc BAM = góc ACM và BH = AI
b) Tam giác MHI vuông cân
bạn vẽ hình rồi mình làm cho!!!!!!!
bạ vẽ hình đi!!!
Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của BC, D là điểm thuộc BM (D khác B và M). Kẻ BH và CI lần lượt vuông góc với AD tại H và I. Chứng minh :
a) Góc BAM = góc ACM và BH = AI
b) Tam giác MHI vuông cân
Bài 4. Cho tam giác ABC vuông cân tại A. Gọi D là trung điểm của BC. Trên đoạn AD lấy điểm E bất kì (E khác A và D). Qua E kẻ các đường vuông góc với AB, AC lần lượt tại M và N. a) Chứng minh tứ giác AMEN là hình vuông. b) Chứng minh MN // BC. c) Qua M kẻ đường thẳng vuông góc với DN tại F. Chứng minh AFE 90 độ d) Chứng minh B, E, F thẳng hàng.
a: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là tia phân giác của \(\widehat{BAC}\) và AD\(\perp\)BC
Xét tứ giác AMEN có
\(\widehat{AME}=\widehat{ANE}=\widehat{MAN}=90^0\)
Do đó: AMEN là hình chữ nhật
Hình chữ nhật AMEN có AE là phân giác của \(\widehat{MAN}\)
nên AMEN là hình vuông
b: AMEN là hình vuông
=>\(\widehat{AMN}=45^0\)
=>\(\widehat{AMN}=\widehat{ABC}\left(=45^0\right)\)
mà hai góc này là hai góc ở vị trí đồng vị
nên MN//BC
Cho tam giác ABC vuông cân tại A . Gọi D là trung điểm của BC. Trên đoạn AD lấy điểm E bất kì ( E khác A và D ). Qua E kẻ các đường vuông góc với AB AC , lần lượt tại M N, .
a) Chứng minh tứ giác AMEN là hình vuông.
b) Chứng minh MN BC / / .
c) Qua M kẻ đường thẳng vuông góc với DN tại F . Chứng minh AFE = 90 . d) Chứng minh B E F , , thẳng hàng.