Cho tam giác ABC vuông cân tại A, M là trung điểm BC. Lấy điểm D bất kì thuộc cạnh BC. H và I thứ tự là hình chiếu của B và C xuống đường thẳng AD. Đường thẳng AM cắt CI tại N. Chứng minh :
a. BH = AI
b. BH2 + CI2 có giá trị không đổi.
c. Đường thẳng DN vuông góc với AC
d. IM là phân giác góc HIC
Cho tam giác ABC vuông cân tại A,M là trung điểm của BC. Lấy điểm D bất kì thuộc BM. H và I thứ tự là hình chiếu của B và C xuống đường thẳng AD. Đường thẳng AM cắt BI tại N. Chứng minh rằng:
a) BH = AI
b) BH2 + CI2 có giá trị không đổi
c) Đường thẳng DN vuông góc với AC
d) IM là phân giác của góc HIC
Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Lấy D bất kì thuộc cạnhBC. H và I là thứ tự hình chiếu của B và C xuống đường thẳng AD. Đường thẳng AM cắt CI tại N. CMr
BH=AN
BH^2 + CI^2 cs giá trị ko đổi
Đường thằng DN vuông góc với AC
IM là pg góc HIC
cho tam giác ABC vuông tại A, M là trung điểm của BC. Lấy D bất kì thuộc BC. H và I thứ tự là hình chiếu B và C XUỐNG ĐƯỜNG thẳng AD, đường thẳng AM cắt CI tại N. Chứng minh rằng:
a) BH=AI
b) BH bình phương + CI bình phương có giá trị không đổi
c) đường thẳng DN VUÔNG GÓC VỚI AC
d) IM là đường phân giác góc HIC
Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Lấy điểm D bất kì thuộc cạnh BC. H và I thứ tự là hình chiếu của B và C xuống đường thẳng AD. Đường thẳng AM cắt CI tại N. Chứng minh rằng:
a, BH=AI
b, BH bình phươngCI bình phương có giá trị không đổi
c, Đường thẳng DN vuông góc với AC
d, IM là phân giác của góc HIC
Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Lấy điểm D bất kì thuộc cạnh BC. H và I thứ tự là hình chiếu của B và C xuống đường thẳng AD. Đường thẳng AM cắt CI tại N. Chứng minh rằng:
a, BH=AI
b, BH bình phươngCI bình phương có giá trị không đổi
c, Đường thẳng DN vuông góc với AC
d, IM là phân giác của góc HIC
Cho tam giác ABC vuông cân tại A, M là trung điểm BC. Lấy điểm D bất kì thuộc cạnh BC. H và I thứ tự là hình chiếu của B và C xuống đường thẳng AD. Đường thẳng AM cắt CI tại N. Chứng minh rằng:
a) BH = AI.
b) BH^2 + CI^2 = 2AM^2
c) IM là phân giác của góc HIC
Cho tam giác ABC vuông cân tại A, M là trung điểm BC. Lấy điểm D bất kì thuộc cạnh BC. H và I thứ tự là hình chiếu của B và C xuống đường thẳng AD. Đường thẳng AM cắt CI tại N. Chứng minh rằng:
a) BH = AI.
b) BH^2 + CI^2 = 2AM^2
c) IM là phân giác của góc HIC
Cho tam giác ABC vuông cân tại A, M là trung điểm BC. Lấy điểm D bất kì thuộc cạnh BC. H và I thứ tự là hình chiếu của B và C xuống đường thẳng AD. Đường thẳng AM cắt CI tại N. Chứng minh rằng:
a) BH = AI.
b) BH^2 + CI^2 = 2AM^2
c) IM là phân giác của góc HIC