Cho \(\Delta ABC\)có hai đường phân giác AD, BE cắt nhau và vuông góc tại I. Biết AC=3cm;BC=4cm. Tính AB?
Cho Tam giác ABC các tia phân giác của góc B và góc C cắt nhau tại I. Qua I kẻ đường thẳng song song AB cắt AC tại D và cắt BC tại E a) Biết góc A =50°. Tính góc BIC b) Chứng minh rằng tam giác IAD cân tại D c) Biết DE = 8cm, Be = 3cm. Tính AD
a: \(\widehat{B}+\widehat{C}=130^0\)
\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{130^0}{2}=65^0\)
hay \(\widehat{BIC}=115^0\)
b: Xét ΔDAI có \(\widehat{DAI}=\widehat{DIA}\)
nên ΔDAI cân tại D
Cho Tam giác ABC các tia phân giác của góc B và góc C cắt nhau tại I. Qua I kẻ đường thẳng song song AB cắt AC tại D và cắt BC tại E a) Biết góc A =50°. Tính góc BIC b) Chứng minh rằng tam giác IAD cân tại D c) Biết DE = 8cm, Be = 3cm. Tính AD
a: \(\widehat{B}+\widehat{C}=130^0\)
\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{130^0}{2}=65^0\)
hay \(\widehat{BIC}=115^0\)
b: Xét ΔDAI có \(\widehat{DAI}=\widehat{DIA}\)
nên ΔDAI cân tại D
bài 1 Cho \(\Delta ABC\) vuông tại A. Tia phân giác của góc B căt AC ở . Tia phân giác của góc ngoài tại điểm B cắt đường thẳng AC tại E cho biết AD= 3cm, CD=5cm . tính AB , BC, AE
bài 2 cho tam giác ABC có AB=AC biết AB =10, BC=12 . Kẻ AH vuông góc C, kẻ Ce vuông góc AB . Tính AH, CE
GIÚP MÌNH VỚI TỐI KIA MÌNH I HC RỒI
cho \(\Delta\)ABC có AB<AC vuông tại B, phân giác AD của góc A cắt BC tại D. từ D kẻ DH vuông góc với AC (H∈AC);và HD và AB kéo dài cắt tai I. Chứng minh rằng:
a) \(\Delta\)ABC = \(\Delta\)AHD
b) AD là trung trực của BH
c) \(\Delta\)DIC cân
d)BH//IC
e) AD\(\perp\)IC
g) BC > AD + AD - 2AB
a: Xet ΔABD vuông tại B và ΔAHD vuông tại H có
AD chung
góc BAD=góc HAD
=>ΔABD=ΔAHD
b; AB=AH
DB=DH
=>AD là trung trực của BH
c: Xet ΔDBI vuông tại B và ΔDHC vuông tại H có
DB=DH
góc BDI=góc HDC
=>ΔBDI=ΔHDC
=>DI=DC
=>ΔDIC cân tại D
d: Xét ΔAIC có AB/BI=AH/HC
nên BH//IC
e: AD vuông góc BH
BH//IC
=>AD vuông góc IC
1 . Cho tam giác ABC . Các đường phân giác BD và CE cắt nhau tại I . Biết rằng góc BIC = 125 độ . Tính góc BAC ?
2 . Cho tam giác ABC vuông tại A . Các tia phân giác của các góc B và góc C cắt nhau tại I . Gọi D và E là trong các đường vuông góc vẽ từ I đến AB và AC .
a / Chứng minh : AD = AE
b / Biết AB = 6cm , AC = 8cm . Tính độ dài cạnh AD ?
1 ) Cho tam giác ABC . Các đường phân giác BD và CE cắt nhau tại I . Biết rằng góc BIC = 125 độ . Tính góc BAC ?
2 ) Cho tam giác ABC vuông tại A . Các tia phân giác của các góc B và góc C cắt nhau tại I . Gọi D và E là trong các đường vuông góc vẽ từ I đến AB và AC .
a ) Chứng minh rằng : AD = AE
b ) Biết AB = 6cm , AC = 8cm . Tính độ dài cạnh AD
1.cho tam giác ABC có AB<AC<BC . Tia phân giác của góc A cắt BC tại D , tia phân giác của góc B cắt AC tại E . Hai tia phân giác AD và BE cắt nhau tại I . So sánh BD và CD
2.cho tam giác ABC có AB<AC . Tia phân giác cắt BC ở D . Kẻ AH vuông góc với BC . Gọi M là trung điểm của BC . Chứng minh rằng tia AD nằm giữa hai tia AH và AM
1.Lấy F trên AC sao cho AB = AF mà AB < AC => AF < AC => F nằm giữa A,C
\(\Delta ADB,\Delta ADF\)có AD chung ; AB = AF ;\(\widehat{A_1}=\widehat{A_2}\)(AD là phân giác góc BAC)\(\Rightarrow\Delta ADB=\Delta ADF\left(c.g.c\right)\)
\(\Rightarrow\widehat{D_1}=\widehat{D_2}\); DB = DF mà\(\widehat{F_1}>\widehat{D_1};\widehat{D_2}>\widehat{C}\)(\(\widehat{F_1};\widehat{D_1}\)lần lượt là góc ngoài\(\Delta ADF,\Delta ADC\))nên\(\widehat{F_1}>\widehat{C}\)
\(\Delta DFC\)có\(\widehat{F_1}>\widehat{C}\)nên DC > DF = DB.Vậy BD < CD
2.Theo chứng minh câu 1,ta được BD < CD
\(\Rightarrow BC=BD+CD=2BD+CD-BD\Rightarrow2BD< BC\Rightarrow BD< \frac{BC}{2}\left(=BM\right)\)
=> D nằm giữa B,M => AD nằm giữa AB,AM (1)
\(\Delta ABC\)có AB < AC nên\(\widehat{B}>\widehat{C}\)mà\(\widehat{BAH}=90^0-\widehat{B};\widehat{CAH}=90^0-\widehat{C}\)(vì\(\Delta AHB,\Delta AHC\)vuông tại H)
\(\Rightarrow\widehat{BAH}< \widehat{CAH}\)
\(\Rightarrow\widehat{BAC}=\widehat{BAH}+\widehat{CAH}=2\widehat{BAH}+\widehat{CAH}-\widehat{BAH}\Rightarrow2\widehat{BAH}< \widehat{BAC}\Rightarrow\widehat{BAH}< \frac{\widehat{BAC}}{2}\left(=\widehat{BAD}\right)\)
=> AH nằm giữa AB,AD (2).Từ (1) và (2),ta có đpcm
cho tam giác abc nhọn có ad là đường cao, kẻ be vuông góc ac tại e. tia phân giác góc dac cắt be và bc ở i và k. tia phân giác góc ebc cắt ad và ac ở m và n
a)cm ak vuông góc bn
b)mink là hình gì vì sao