Cho tam giác ABC cân tại A có AB = AC = 13 cm ; BC = 10 cm.
Tính cos B .
Cho tam giác ABC cân tại A. AB=AC=13 cm, BC=10 cm. Tính cos A
Kẻ AH vuông góc với BC.
Vì ABC là tam giác cân nên AH là trung tuyến ứng với BC.
=> HB = HC = BC/2 = 10/2=5 cm.
cos C = 5/13 => Góc C = 67 độ 38 phút.
Vì ABC là tam giác cân nên góc B = Góc C = 67 độ 23 phút.
=> Góc A = 180 - 2 . 67 độ 23 phút = 45 độ 14 phút
=> cos A = 119/169
(Mik ko có kẻ hình đâu nha)
Cho tam giác ABC có BC= 1cm; AC= 7cm và độ dài cạnh AB là một số nguyên (cm).Tính độ dài AB và cho biết tam giác ABC là tam giác gì?
A. AB= 7cm và tam giác ABC vuông tại A
B. AB= 7cm và tam giác ABC cân tại A
C. AB= 7cm và tam giác ABC vuông cân tại A
D. AB= 8cm và tam giác ABC vuông tại B
Cho tam giác ABC cân tại A Gọi I là trung điểm của BC biết AB = AC = 13 cm , BC = 12 cm Tính AI
Kẻ AH vuông góc với BC.
Vì ABC là tam giác cân nên AH là trung tuyến ứng với BC.
=> HB = HC = BC/2 = 10/2=5 cm.
cos C = 5/13 => Góc C = 67 độ 38 phút.
Vì ABC là tam giác cân nên góc B = Góc C = 67 độ 23 phút.
=> Góc A = 180 - 2 . 67 độ 23 phút = 45 độ 14 phút
=> cos A = 119/169
Kẻ AH vuông góc với BC.
Vì ABC là tam giác cân nên AH là trung tuyến ứng với BC.
=> HB = HC = BC/2 = 10/2=5 cm.
cos C = 5/13 => Góc C = 67 độ 38 phút.
Vì ABC là tam giác cân nên góc B = Góc C = 67 độ 23 phút.
=> Góc A = 180 - 2 . 67 độ 23 phút = 45 độ 14 phút
=> cos A = 119/169
Kẻ AH vuông góc với BC.
Vì ABC là tam giác cân nên AH là trung tuyến ứng với BC.
=> HB = HC = BC/2 = 10/2=5 cm.
cos C = 5/13 => Góc C = 67 độ 38 phút.
Vì ABC là tam giác cân nên góc B = Góc C = 67 độ 23 phút.
=> Góc A = 180 - 2 . 67 độ 23 phút = 45 độ 14 phút
=> cos A = 119/169
Cho tam giác ABC vuông tại A, tại C kẻ đường phân giác cắt BC tại D. Từ D kẻ DE vuông góc BC a)c/m tam giác ACD=tam giác ACE b)c/m tam giác ADE cân c)cho AB=12 cm, AC=13. Tính BC, tính chu vi tam giác ABC
Sửa đề: cắt AB tại D.
a) Sửa đề: ΔACD=ΔECD
Xét ΔACD vuông tại A và ΔECD vuông tại E có
CD chung
\(\widehat{ACD}=\widehat{ECD}\)(CD là tia phân giác của \(\widehat{ACE}\))
Do đó: ΔACD=ΔECD(Cạnh huyền-góc nhọn)
b) Ta có: ΔACD=ΔECD(cmt)
nên DA=DE(Hai cạnh tương ứng)
Xét ΔDAE có DA=DE(cmt)
nên ΔDAE cân tại D(Định nghĩa tam giác cân)
Cho tam giác ABC có AB < AC . Trên AC lấy M sao cho CM = AB . Vẽ đường trung trực cắt của AC cắt tia phân giác của góc A tại O . CM :
a) Tam giác OAC cân
b) Tam giác OBM cân
c) Cho AC = 3√2
cm ; OA = 3 cm
CMR tam giác ABC là tam giác vuông
a) Gọi trung điểm của AC là H.
Xét tam giác AOH và COH có:
AH = CH (gt)
OH chung
\(\widehat{AHO}=\widehat{CHO}=90^o\)
\(\Rightarrow\Delta AOH=\Delta COH\) (Hai cạnh góc vuông)
\(\Rightarrow OA=OC\) (Hai cạnh tương ứng)
Hay tam giác OAC cân tại O.
b) Xét tam giác ABO và tam giác AMO có:
AB = AM (gt)
Cạnh AO chung
\(\widehat{BAO}=\widehat{MAO}\) (Do AO là tia phân giác góc A)
\(\Rightarrow\Delta ABO=\Delta AMO\left(c-g-c\right)\Rightarrow OB=OM\)
Hay tam giác OMB cân tại O.
c) Ta có \(AH=\frac{AC}{2}=\frac{3\sqrt{2}}{2}\left(cm\right)\)
Xét tam giác vuông AOH, áp dụng định lý Pi-ta-go ta có:
\(OH^2=AO^2-AH^2=3^2-\left(\frac{3\sqrt{2}}{2}\right)^2=\frac{9}{2}\)
\(\Rightarrow OH=\frac{3\sqrt{2}}{2}=AH\)
Vậy ta giác OAH vuông cân tại H. Suy ra \(\widehat{OAH}=45^o\Rightarrow\widehat{BAC}=2.45^o=90^o\)
Vậy tam giác ABC vuông tại A.
Cho tam giác ABC cân tại A có AB = AC = 6cm ; BC = 4cm . Các đường phân giác BD và CE cắt nhau tại I ( E trên AB và D trên AC )
a) Tính độ dài AD , ED
b) Cm : Tam giác ADB đồng dạng với tam giác AEC
c) Cm : IE.CD = ID.BE
d) Cho \(S_{ABC}\) = 60 \(cm^2\) . Tính \(S_{AED}\)
b: Xét ΔADB và ΔAEC có
\(\widehat{A}\) chung
\(\widehat{ABD}=\widehat{ACE}\left(=\dfrac{1}{2}\widehat{ABC}\right)\)
Do đó: ΔADB\(\sim\)ΔAEC
Cho tam giác ABC cân tại A có AB = 14 cm. Đường trung trực của AB cắt AC tại E. Chu vi tam giác BEC = 24 cm. Tính BC.
Cho tam giác ABC cân tại A . Vẽ AH vuông góc với BC (H thuộc BC).
a. CM: tam giác ABH= tam giác ACH và H là trung điểm BC
b.cho biết AC = 13 cm; AH = 12 cm. Tính BC
c. Gọi M là trung điểm của AB. Đường thẳng vuông góc với AB tại M cắt AH tại E . CMR: tam giác AEB cân .
d. Trên cạnh AB; AC lần lượt lấy các điểm D ; F sao cho BD = AF . CM : EF< DF/2
cho tam giác ABC cân tại A . Vẽ AH vuông góc BC . a, CM tam giác AHB = tam giác AHC . b, Vẽ HM vuông góc AB , HN vuông góc AC . CM tam giác AMN cân . c, CM MN // BC . Có vẽ hình nha mọi người
a, Xét tg AHB và tg AHC, có:
AB=AC(tg cân)
góc AHB= góc AHC(=90o)
góc B= góc C(tg cân)
=> tg AHB= tg AHC(ch-gn)
b,Xét tg BMH và tg CNH, có:
góc B= góc C(tg cân)
BH=CH(2 cạnh tương ứng)
góc BMH= góc CNH(=90o)
=> tg BMH= tg CNH(ch-gn)
Xét tg AMH và tg ANH, có:
AH chung.
góc AMH= góc ANH(=90o)
MH=HN(2 cạnh tương ứng)
=> tg AMH= tg ANH(ch- cgv)
=> AM=AN(2 cạnh tương ứng)
=> tg AMN là tg cân.
c, Ta có:tg AMN cân tại A, tg ABC cân tại A nên, suy ra:
Các góc ở đáy bằng nhau: góc B= góc C= góc AMN= góc ANM.
Mà góc AMN và góc B ở vị trí đồng vị nên, suy ra:
MN // BC.