So sánh A=2013^2010+1/2013^2011+1;B=2013^2011-2/2013^2012-2
so sánh A=2013^2010+1/2013^2011+1 và B=2013^2011-2/2013^2012-2
so sánh A = 2013^2010+1/2013^2011+1 và B = 2013^2011 -2 /2013^2012-2
-Ta có: $B<1\Rightarrow B<\frac{2013^{2011}-2+2015}{2013^{2012}-2+2015}=\frac{2013^{2011}+2013}{2013^{2012}+2013}=\frac{2013(2013^{2010}+1)}{2013(2013^{2011}+1)}=\frac{2013^{2010}+1}{2013^{2011}+1}=A$
-Vậy: B<A
so sánh A và B biết:
A=2010/2011+2011/2012+2012/2013
B=2010+2011+2012/2011+2012+2013
so sánh :A= 2010/2011+2011/2012+2012/2013; B= 1/2+1/4+...+1/17
So sánh 2 số sau: M=\(\frac{2013^{2012}+2012}{2013^{2011}+1}\)và \(N=\frac{2013^{2011}+2012}{2013^{2010}+1}\)
Ta có :
\(\frac{1}{2013}M=\frac{2013^{2012}+2012}{2013^{2012}+2013}=\frac{2013^{2012}+2013}{2013^{2012}+2013}-\frac{1}{2013^{2012}+2013}=1-\frac{1}{2013^{2012}+2013}\)
Lại có :
\(\frac{1}{2013}N=\frac{2013^{2011}+2012}{2013^{2011}+2013}=\frac{2013^{2011}+2013}{2013^{2011}+2013}-\frac{1}{2013^{2011}+2013}=1-\frac{1}{2013^{2011}+2013}\)
Vì \(\frac{1}{2013^{2012}+2013}< \frac{1}{2013^{2011}+2013}\) nên \(M=1-\frac{1}{2013^{2012}}>N=1-\frac{1}{2013^{2011}+2013}\)
Vậy \(M>N\)
Chúc bạn học tốt ~
Bài 1:
a cho p/s A=3n-5/n+ 4 (n€ Z; n# -4)
tìm n để A có g.trị nguyên
b so sánh A=2013^2010+1/2013^2011+1 và B= 2013^2011-2/2013^2012-2
A=3n-5/n+4=3(n+4)-17/n+4=3-(17/n+4)
Để A có giá trị nguyên
=>17 chia hết cho n+4
=>n+4 thuộc Ư(17)
Mà Ư(17)={1;-1;17;-17}
Ta có bảng sau:
n+4 | 1 | -1 | 17 | -17 |
n | -3 | -5 | 13 | -21 |
Vậy n={-3;-5;13;-21}
so sánh
2010/2011+2011/2012+2012/2013
2010+2011+2012/2011+2012+2013
\(\frac{2010+2011+2012}{2011+2012+2013}=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
Vì \(\frac{2010}{2011+2012+2013}<\frac{2010}{2011};\frac{2011}{2011+2012+2013}<\frac{2011}{2012};\frac{2012}{2011+2012+2013}<\frac{2012}{2013}\)
nên phép dưới nhỏ hơn phép trên
không được thực hiện phép tính, hãy so sánh tổng M với 1 biết : 2010/2011 2011/2012 2012/2013 2013/2014
Ta thấy
\(\dfrac{2010}{2011}< 1\)
\(\dfrac{2011}{2012}< 1\)
\(\dfrac{2012}{2013}< 1\)
\(\dfrac{2013}{2014}< 1\)
=> Tổng M của những phân số trên sẽ nhỏ hơn 1
=> M < 1
a = 2010/2011 + 2011/2012 + 2012/2013 so sánh a và b
b = 2010/2011 + 2011/2012 + 2012/2013
So sánh P và Q biết: P=2010/2011+2011/2012+2012/2013 và Q=2010+2011+2012/2011+2012+2013
bạn tham khảo:
2010/2011+2012+2013 > 2010+2011+2012/2011+2012+2013
2011/2011+2012+2013 > 2010+2011+2012/2011+2012+2013
2012/2011+2012+2013 > 2010+2011+2012/2011+2012+2013
=> 2010/2011+2011/2012+2012/2013 > 2010+2011+2012/2011+2012+2013
2010/2011+2012+2013 > 2010+2011+2012/2011+2012+2013
2011/2011+2012+2013 > 2010+2011+2012/2011+2012+2013
2012/2011+2012+2013 > 2010+2011+2012/2011+2012+2013
=> 2010/2011+2011/2012+2012/2013 > 2010+2011+2012/2011+2012+2013