Cho \(A=\dfrac{2009.2010-2}{2008-2008.2010};B=-\dfrac{2009.20102010}{20092009.2010}\)
Tính : \(A+B\)
2009.2010-2 phần 2008+2008.2010
Rút gọn:
A=2009.2010-2/2008+2008.2010 và B= -2009.20102010/20092009.2010
Cho \(A=\frac{2009.2010-2}{2008+2008.2010};B=\frac{-2009.20102010}{20092009.2010}\). Tính A + B
\(A=\frac{2009.2010-2}{2008+2008.2010}=\frac{\left(2008+1\right).2010-2}{2008+2008.2010}\)
\(=\frac{2008.2010+2010-2}{2008+2008.2010}=\frac{2008.2010+2008}{2008+2008.2010}=1\)
\(B=\frac{-2009.20102010}{20092009.2010}=\frac{-2009.2010.10001}{2009.10001.2010}=-1\)
Vậy A + B = 1 + (-1) = 0
\(A=\frac{2009.2010-2}{2008+2008.2010}=\frac{\left(2008+1\right).2010-2}{2008+2008.2010}\)
\(=\frac{2008.2010+2010-2}{2008+2008.2010}=\frac{2008.2010+2008}{2008+2008.2010}=1\)
\(B=\frac{-2009.20102010}{20092009.2010}=\frac{-2009.2010.10001}{2009.10001.2010}\)
Vậy A + B = 1 + (-1) = 0
kiểu này cuối tuần việt đầu bảng điểm chắc lun
Cho A = \(\frac{2009.2010-2}{2008+2008.2010}\) và B = \(\frac{-2009.20102010}{20092009.2010}\)
Tính A + B
Ta có : \(A=\frac{2009.2010-2}{2008+2008.2010}>0\)
\(B=\frac{-2009.20102010}{20092009.2010}< 0\)
Nên A > B
Ta có :
\(A=\frac{2009.2010-2}{2008+2008.2010}\)
\(A=\frac{\left(2008+1\right).2010-2}{2008.\left(1+2010\right)}=\frac{2008.2010+2008}{2008.2011}\)
\(A=\frac{2008.\left(1+2010\right)}{2008.2011}=\frac{2008.2011}{2008.2011}=1\)
\(B=\frac{-2009.20102010}{20092009.2010}=\frac{\left(-2009\right).2010.10001}{2009.10001.2010}=\frac{-2009}{2009}=-1\)
Vậy \(A+B=1+\left(-1\right)=0\)
Vì 2009*2010>2.
=>2009*2010-2>0.
2008*2008*2010>0(hiển nhiên).
=>A>0.
Ta dễ thấy:
Tử của B là số âm còn mẫu là số dương.
=>B<0.
=>A>0>B.
Vậy A>B.
Cho A=\(\frac{2009.2010-2}{2008+2008.2010}\); B=\(\frac{-2009.20102010}{20092009.2010}\)
Tính A+B
\(A=\frac{2009\cdot2010-2}{2008+2008\cdot2010}=\frac{\left(2008+1\right)\cdot2010-2}{2008+2008\cdot2010}=\frac{\left(2008\cdot2010\right)+\left(2010-2\right)}{2008+2008\cdot2010}=\frac{2008\cdot2010+2008}{2008+2008\cdot2010}=1\)\(B=\frac{-2009\cdot20102010}{20092009\cdot2010}=\frac{-2009\cdot2010\cdot10001}{2009\cdot10001\cdot2010}=-1\)
=>A+B=1+(-1)=0
Vậy A+B=0
\(A=\frac{2009.2010-2}{2008+2008.2010}=\frac{2008.2010+2010-2}{2008+2008.2010}=\frac{2008.2010+2008}{2008+2008.2010}=1\)
\(B=\frac{-2009.20102010}{20092009.2010}=\frac{-2009.2010.10001}{2009.10001.2010}=-1\)
Vậy \(a+b=1+\left(-1\right)=0\)
Cho A= \(\frac{2009.2010-2}{2008+2008.2010}\)
B= \(\frac{-2009.20102010}{20092009.2010}\)
Tính A+B
Cho A=\(\frac{2009.2010-2}{2008+2008.2010}\) và B=\(\frac{-2009.20102010}{20092009.2010}\)
Tính A+B
A=\(\frac{2009.2010-2}{2008+2008.2010}=\frac{\left(2008+1\right).2010-2}{2008+2008.2010}\)
\(=\frac{2008.2010+2010-2}{2008+2008.2010}\)
\(=\frac{2008.2010+2008}{2008+2008.2010}=1\)
B=\(\frac{-2009.20102010}{20092009.2010}=\frac{-2009.2010.10001}{2009.10001.2010}=-1\)
Vậy A+|B= 1+(-1)=0
\(A=\frac{2009.2010-2}{2008+2008.2010}\)
\(B=\frac{-2009.20102010}{20092009.2010}\)
So sánh A và B
A = \(\frac{2009.2010-2}{2008+2008.2010}=\frac{2009.2010-2}{2008.\left(2010+1\right)}=\frac{2009.2010-2}{2008.2011}=\frac{2008.2010+2010-2}{2008.2011}=\frac{2008.2011}{2008.2011}=1\)
B = \(\frac{-2009.20102010}{20092009.2010}=\frac{-2009.10001.2010}{2009.10001.2010}=-1\)
1 > -1 => A > B
Ta có:
\(A=\frac{2009.2010-2}{2008+2008.2010}\)
\(A=\frac{\left(2008+1\right).2010-2}{2008+2008.2010}\)
\(A=\frac{2008.2010+2010-2}{2008+2008.2010}\)
\(A=\frac{2008.2010+2008}{2008+2008.2010}\)
\(A=1\)
\(B=\frac{-2009.20102010}{20092009.2010}\)
\(B=\frac{-2009.2010.10001}{2009.10001.2010}\)
\(B=-1\)
Vì \(1>-1\Rightarrow A>B\)
Vậy \(A>B\)
Ta có -2009.20102010 bé hơn 0 =>B bé hơn 0 (1)
Lại có:2009.2010-2lonws hơn 0=> A lớn hơn 0 (2)
Từ (1) và (2) => A>B
Rút gọn E=\(\frac{2009.2010-2}{2008+2008.2010}\)+\(\frac{-2009.20102010}{20092009.2010}\)