cho tam giác ABC có góc ABC=30;AC=1/2BC. Chứng minh tam giác ABC vuông tại A?
1. Cho tam giác ABC cân tại B. Trong tam giác đó lấy điểm O sao cho góc OAC=10 độ; góc OCA=30 độ. Tính góc ABO
2. Cho tam giác ABC cân tại B có góc BAC=80 độ. Lấy một điểm I trong tam giác sao cho góc IAC=10 độ và góc ICA=30. Tính góc AIB
3. Cho tam giác ABC cân có góc A=100 độ, điểm M nằm trong tam giác sao cho góc MBC=10 độ; MCB=20 độ. Tính góc AMB
Câu hỏi của Nguyễn Vũ Thu Hương - Toán lớp 7 - Học toán với OnlineMath
2. cho tam giác ABC có BC = 6 cm, góc B=45°,góc C=30°.Tính diện tích tam giác ABC
Kẻ đường cao AH
Trong tam giác vuông ABH:
\(cotB=\dfrac{BH}{AH}\Rightarrow BH=AH.cotB\)
Trong tam giác vuông ACH:
\(cotC=\dfrac{CH}{AH}\Rightarrow CH=AH.cotC\)
\(\Rightarrow BH+CH=AH.cotB+AH.cotC\)
\(\Leftrightarrow BC=AH\left(cotB+cotC\right)\)
\(\Leftrightarrow AH=\dfrac{BC}{cotB+cotC}\)
\(\Rightarrow S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.\dfrac{BC^2}{cotB+cotC}=\dfrac{1}{2}.\dfrac{6^2}{cot45^0+cot30^0}\approx11,4\left(cm^2\right)\)
cho tam giác ABC vuông tại A, có góc ABC=30 độ, AC=1cm,
tính diện tích tam giác ABC
Xét ΔBAC vuông tại A có tan ABC=AC/AB
=>1/AB=tan 30
=>\(AB=\sqrt{3}\left(cm\right)\)
=>\(S_{ABC}=\dfrac{\sqrt{3}}{2}\left(cm^2\right)\)
1. Cho tam giác ABC có góc B=45 độ, góc C=30 độ , BM là đường trung tuyến của tam giác ABC. Tính số đo góc AMB
2. Cho tam giác ABC có AB=6cm, AC=10cm, độ dài đường trung tuyến AM=4cm. Tính diện tích tam giác ABC
Cho tam giác ABC vuông tại A có góc B bằng 30° và tam giác MNP vuông tại góc M có góc P bằng 60°. Chứng minh tam giác ABC đồng dạng với tam giác MNP.
Ta có: <A+<B+<C=180
90+30+<C=180
<c=180-30-90=60
Xét ▲ABC và ▲MNP ta có:
<A=<M=90
<C=<P(=60)
Do đó ▲ABC đồng dạng ▲MNP(g-g)
cho tam giác ABC có góc A=30 và B-C=30do c/minh tam giác ABC là tam giác vuông
cho tam giác ABC có AB=8cm, AC=12cn, góc A = 30 độ. Tính diện tích tam giác `ABC`.
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinA=\dfrac{1}{2}\cdot8\cdot12\cdot sin30=24\left(cm^2\right)\)
\(S_{ABC}_{ }=\dfrac{1}{2}AB.AC.SinA=24dvdt\)
cho tam giác ABC vuông ở B có AB=2, góc BAC = 30 độ. Giải tam giác vuông ABC.
Ta có:
\(\widehat{B}=180^o-90^o-30^o=60^o\)(tổng 3 góc trong tam giác)
\(AC=2BC\)(cạnh đối diện góc 30 độ)
Áp dụng định lý Pytago
\(AC^2=BC^2+AB^2\)
\(3BC^2=4\Rightarrow BC=\dfrac{2\sqrt{3}}{3}\)\(\Rightarrow AC=\dfrac{4\sqrt{3}}{3}\)
Cho tam giác ABC có AB = 1 cm, AC = 2cm, góc ABC = 45 độ, góc ACB = 30 độ. Tính độ dài BC và diện tích tam giác ABC.