A=(\(\frac{2}{x-2}-\frac{2}{x+2}\)).x2+4x+4/8
a.tìm điều kiện xác định và rút gọn A
b.tìm x khi A=x;A=x/2
c.tìm x\(\in\)z để A thuộc z
Cho biểu thức A= \(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\)
a) tim điều kiện xác định để giá trị cua bieu thức A dược xác định
b) Rút gọn bieu thức A
a, \(ĐKXĐ\hept{\begin{cases}2-x\ne0\\2+x\ne0\end{cases}\Leftrightarrow x\ne\pm2}\)
b, Ta có: \(A=\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\)
\(=\frac{\left(2+x\right)^2}{\left(2-x\right)\left(2+x\right)}+\frac{4x^2}{\left(2-x\right)\left(2+x\right)}-\frac{\left(2-x\right)^2}{\left(2-x\right)\left(2+x\right)}\)
\(=\frac{4+4x+x^2+4x^2-4+4x-x^2}{\left(2-x\right)\left(2+x\right)}\)
\(=\frac{4x^2+8x}{\left(2-x\right)\left(2+x\right)}\)
\(=\frac{4x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{4x}{x-2}\)
a) ĐKXĐ: \(\hept{\begin{cases}2-x\ne0\\x^2-4\ne0\\2+x\ne0\end{cases}}\)<=>\(\hept{\begin{cases}2-x\ne0\\2+x\ne0\\\left(x-2\right)\left(x+2\right)\ne0\end{cases}}\)<=>\(x\ne\pm2\)
b)\(A=\frac{2+x}{2-x}-\frac{4x}{x^2-4}-\frac{2-x}{2+x}\)
\(\Leftrightarrow A=\frac{2+x}{2-x}+\frac{4x}{4-x^2}-\frac{2-x}{2+x}\)
\(\Leftrightarrow A=\frac{\left(2+x\right)\left(2+x\right)}{\left(2-x\right)\left(2+x\right)}+\frac{4x}{\left(2-x\right)\left(2+x\right)}-\frac{\left(2-x\right)\left(2-x\right)}{\left(2+x\right)\left(2-x\right)}\)
\(\Leftrightarrow A=\frac{x^2+4x+4+4x-x^2+4x-4}{\left(2+x\right)\left(2-x\right)}\)
\(\Leftrightarrow A=\frac{12x}{\left(2+x\right)\left(2-x\right)}\)
Lúc nãy nhầm đề nên sai câu b)
Sửa: \(A=\frac{\left(2+x\right)\left(2+x\right)}{\left(2-x\right)\left(2+x\right)}+\frac{4x^2}{\left(2+x\right)\left(2-x\right)}-\frac{\left(2-x\right)\left(2-x\right)}{\left(2+x\right)\left(2-x\right)}\)
\(\Leftrightarrow A=\frac{4+4x+x^2+4x^2-4+4x-x^2}{\left(2+x\right)\left(2-x\right)}\)
\(\Leftrightarrow A=\frac{4x^2+8x}{\left(2+x\right)\left(2-x\right)}\)
\(\Leftrightarrow A=\frac{4x\left(x+2\right)}{\left(x+2\right)\left(2-x\right)}\)
\(\Leftrightarrow A=\frac{4x}{2-x}\)
1. P=\(\frac{4x^{2\:}+4x}{\left(x+1\right)\left(2x-6\right)}\)
a) Tìm điều kiện xác định của P
b) Tìm giá trị của x để P=1
2. P=\(\frac{3}{x+2}+\frac{1}{x-2}-\frac{8}{4-x^2}\)
a) Tìm điều kiện xác định P
b) Rút gọn biểu thức P
c) Tính giá trị của x để P=4
3. P=(\(\frac{1}{x-1}-\frac{x}{1-x^3}.\frac{x^2+x+1}{x+1}\)):\(\frac{2x+1}{x^2+2x+1}\)
a) Tìm điều kiện xác định của P
b) Rút gọn biểu thức P
c) Tính giá trị của P khi x=\(\frac{1}{2}\)
Các bạn giúp mình với nha, cảm ơn trước ạ
Câu 1 :
a) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)
b) Để \(P=1\Leftrightarrow\frac{4x^2+4x}{\left(x+1\right)\left(2x-6\right)}=1\)
\(\Leftrightarrow\frac{4x^2+4x-\left(x+1\right)\left(2x-6\right)}{\left(x+1\right)\left(2x-6\right)}=0\)
\(\Rightarrow4x^2+4x-2x^2+4x+6=0\)
\(\Leftrightarrow2x^2+8x+6=0\)
\(\Leftrightarrow x^2+4x+4-1=0\)
\(\Leftrightarrow\left(x+2-1\right)\left(x+2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=-3\left(TMĐKXĐ\right)\end{cases}}\)
Vậy : \(x=-3\) thì P = 1.
Cho biểu thức :
\(M=\frac{x^4+2}{x^6+1}+\frac{x^2-1}{x^4-x^2+1}-\frac{x^2+3}{x^4+4x^2+3}\)
a) Tìm điều kiện xác định và rút gọn M
b) Tìm giá trị lớn nhất của M
a) \(M=\frac{x^4+2}{x^6+1}+\frac{x^2-1}{x^4-x^2+1}+\frac{x^2+3}{x^4+4x^2+3}\)
\(M=\frac{x^4+2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}+\frac{x^2-1}{x^4-x^2+1}-\frac{x^2+3}{x^4+3x^2+x^2+3}\)
\(M=\frac{x^4+2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}+\frac{x^2-1}{x^4-x^2+1}-\frac{x^2+3}{x^2\left(x^2+3\right)+x^2+3}\)
\(M=\frac{x^4+2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}+\frac{x^2-1}{x^4-x^2+1}-\frac{x^2+3}{\left(x^2+3\right)\left(x^2+1\right)}\)
\(M=\frac{x^4+2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}+\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\)
\(M=\frac{x^4+2+x^4-1-x^4+x^2-1}{\left(x^2+1\right)\left(x^4-x^2+1\right)}\)
\(M=\frac{0+x^4+x^2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}\)
\(M=\frac{x^2\left(x^2+1\right)}{\left(x^2+1\right)\left(x^4-x^2+1\right)}\)
\(M=\frac{x^2}{x^4-x^2+1}\)
Cho biểu thức \(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}\)
1. Nêu Điều kiện xác định và rút gọn biểu thức A
2. Tính giá trị của biểu thức A khi x=9
3. Khi x thỏa mãn điều kiện xác định . hãy tìm giá trị nhỏ nhất của biểu thức B , với B=A (x-1)
Cho Bt \(A=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}\)\(-\frac{3x+1-x^2}{3x}\)
a,Tìm điều kiện xác định và rút gọn bt A
b,Tính giá trị bt A tại x=4
c,tìm x thuộc Z để a thuộc Z
a) A xác định \(\Leftrightarrow\hept{\begin{cases}3x\ne0\\x+1\ne0\\2-4x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-1\\x\ne\frac{1}{2}\end{cases}}}\)
\(A=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}-\frac{3x+1-x^2}{3x}\)
\(A=\left[\frac{\left(x+2\right)\left(x+1\right)}{3x\left(x+1\right)}+\frac{2\cdot3x}{3x\left(x+1\right)}-\frac{3\cdot3x\left(x+1\right)}{3x\left(x+1\right)}\right]\cdot\frac{x+1}{2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{x^2+3x+2+6x-9x^2-9x}{3x\left(x+1\right)}\cdot\frac{x+1}{2\cdot\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{\left(-8x^2+2\right)\left(x+1\right)}{3x\left(x+1\right)2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{2\left(1-4x^2\right)}{3x\cdot2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{2\left(1-2x\right)\left(1-2x\right)}{3x\cdot2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{1+2x}{3x}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{2x+1-3x-1+x^2}{3x}\)
\(A=\frac{x^2-x}{3x}\)
\(A=\frac{x\left(x-1\right)}{3x}\)
\(A=\frac{x-1}{3}\)
b) Thay x = 4 ta có :
\(A=\frac{4-1}{3}=\frac{3}{3}=1\)
c) Để A thuộc Z thì \(x-1⋮3\)
\(\Rightarrow x-1\in B\left(3\right)=\left\{0;3;6;...\right\}\)
\(\Rightarrow x\in\left\{1;4;7;...\right\}\)
Vậy.....
Cho Bt
a,Tìm điều kiện xác định và rút gọn bt A
b,Tính giá trị bt A tại x=4
c,tìm x thuộc Z để a thuộc Z
\(\frac{x^2-25}{x^2-3x}\):\(\frac{x^2+5x}{x-3}\)
a. Điều kiện xác định
b. Rút gọn cho A
c. Tìm x khi A=4
a, x khác 3,0,-5
b, A= (x-5)(x+5) / x(x-3) . (x-3)/x(x+5)
A= x-5/x^2
c, khi A=4
<=> x-5 / x2 =4
=>4x2 -x +5 =0
=> ko có giá trị x để A=4 (câu này ko bt đúng hay sai, hoặc ghi đề sai )
BÀI 6
\(A=\dfrac{x+15}{x^2-9}-\dfrac{2}{x+3}\)
a) viết điều kiện xác định của biểu thức A
b)rút gọn phân thức
c)tìm giá trị của Akhi x=-1
BÀI 7
\(A=\dfrac{x+2}{x-2}+\dfrac{x-1}{x+2}\dfrac{x^2-4x}{4-x^2}\)với x2-4≠0
a)rút gọn biểu thức A
b)tính giá trị cua A khi x=4
a) ĐKXĐ:
\(\left\{{}\begin{matrix}x^2-9\ne0\\x+3\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm3\\x\ne-3\end{matrix}\right.\Leftrightarrow x\ne\pm3\)
b) \(A=\dfrac{x+15}{x^2-9}-\dfrac{2}{x+3}\)
\(A=\dfrac{x+15}{\left(x+3\right)\left(x-3\right)}-\dfrac{2\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)
\(A=\dfrac{x+15-2x+6}{\left(x+3\right)\left(x-3\right)}\)
\(A=\dfrac{21-x}{\left(x+3\right)\left(x-3\right)}\)
c) Thay x = - 1 vào A ta có:
\(A=\dfrac{21-\left(-1\right)}{\left(-1+3\right)\left(-1-3\right)}=\dfrac{21+1}{2\cdot-4}=\dfrac{22}{-8}=-\dfrac{11}{4}\)
\(\left(\frac{x}{x^3-4x}^2+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\))
a, tìm điều kiện của x để A xác định
b, rút gọn biểu thức A
c, tìm giá trị của x để A>0
bài 1 : cho biểu thức:
K=\(\left(\frac{1}{x-1}-\frac{1}{x+1}\right).\frac{x^2-1}{x^2-1+1}\)
a, tìm điều kiện của x để xác định
b, rút gọn biểu thức K và tìm giá trị của x để K lớn nhất
bài 2: cho biểu thức( chỉ cho mình câu c thôi)
L=\(\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x+1}{x^2-1}\right).\frac{x+2003}{x}\)
a, tìm điều kiện đối với x để L xác định
b, rút gọn
c, với giá trị nguyên nào của x thì L xác định
Bài 1 : Điều kiện xác định : \(x\ne\pm1\)
\(K=\left(\frac{x+1}{\left(x-1\right)\left(x+1\right)}-\frac{x-1}{\left(x-1\right)\left(x+1\right)}\right).\frac{x^2-1}{x^2}\)
\(K=\frac{2}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)}{x^2}=\frac{2}{x^2}\)
Nhận thấy giá trị của x càng tăng thì giá trị của M càng giảm
mặt khác , giá trị của x lại không giảm quá 0 nên ta không thể nào xác định được giá trị lớn nhất của K