Bài 1 tổng tất cả các nghiệm của phương trình sinx/cosx-1=0 trong đoạn [0;4π]
Bài 2 số vị trí biểu diễn tất cả các nghiệm của phương trình cos2x.tan x=0 trên đường tròn lượng giác là
Tính tổng tất cả các nghiệm của phương trình 3 cosx – sinx = 1 trên đoạn [0;2π]
A. 5 π 3
B. 11 π 6
C. π 6
D. 3 π 2
Tính tổng hợp tất cả các nghiệm thuộc khoảng 0 ; π của phương trình: 2 cos 3 x = sin x + cos x
A. π
B. 3 π
C. 3 π 2
D. π 2
Câu 1: Tính tổng tất cả các nghiệm của phương trình sin3(\(x-\dfrac{\pi}{4}\)) = \(\sqrt{2}\)sinx trên đoạn [0 ; 2018]
Câu 2: Tính tổng tất cả các nghiệm của phương trình cos2x (tan2x - cos2x) = cos3x - cos2x + 1 trên đoạn [0 ; 43π]
GIÚP MÌNH VỚI!!!
Tổng tất cả các nghiệm của phương trình sin2x/ cosx -1 =0 thuộc đoạn [0;2π ] là
Cho phương trình 1 + cos x c os 2 x − cos x − sin 2 x cos x + 1 = 0. Tính tổng tất cả các nghiệm năm trong khoảng 0 ; 2018 π của phương trình đã cho?
A. 1019090 π
B. 2037171 π
C. 2035153 π
D. 1017072 π
Đáp án D
ĐK: cos x ≠ − 1 . Khi đó P T ⇔ 1 + cos x 2 c os 2 x − cos x − 1 − 1 − c os 2 x 1 + cos x = 0
⇔ 2 c os 2 x − cos x − 1 − 1 − cos x = 0 ⇔ 2 c os 2 x = 2 ⇔ cos x = 1 cos x = − 1 ( l o a i ) ⇔ x = k 2 π
Do x ∈ 0 ; 2018 ⇒ k ∈ 1 ; 1008 ⇒ ∑ = 1 + 2 + 3 + ... + 1008 .2 π = 1 + 1008 2 .1008.2 π = 1017072 π
Tổng các nghiệm của phương trình sinx.cosx + |cosx + sinx| = 1 trên (0; 2π) là:
A. π
B. 2π
C. 3π
D. 4π
Tính tổng tất cả các nghiệm thuộc khoảng 0 ; 2 π của phương trình 2 c os 3 x = sin x + cos x .
A. 6 π
B. 11 π 2
C. 8 π
D. 9 π 2
Tính tổng tất cả các nghiệm thuộc khoảng 0 ; 2 π của phương trình 2 cos3x = sinx + cosx.
A. 6 π
B. 11 π 2
C. 8 π
D. 9 π 2
1, cho phương trình \(sin2x-\left(2m+\sqrt{2}\right)\left(sinx+cosx\right)+2m\sqrt{2}+1=0\) tìm các giá trị m để phương trình có đúng 2 nghiệm \(x\in\left(0;\dfrac{5\Pi}{4}\right)\)
2,tìm tất cả các giá trị thực của tham số m để phương trình \(cos2x+\left(2m+1\right)sinx-m-1=0\) có đúng 2 nghiệm thuộc khoảng \(\left(\dfrac{\Pi}{2};\dfrac{3\Pi}{2}\right)\)
3, cho phương trình \(cos^2x-2mcosx+6m-9=0\) tìm các giá trị m để phương trình có nghiệm thuộc khoảng \(\left(-\dfrac{\Pi}{2};\dfrac{\Pi}{2}\right)\)