viết phương trình mặt cầu (S) biết :
a) (s) có tâm I(2;-1;3) và tiếp xúc (Oxy)
b)(S) qua A(1;-1;4) và tiếp xúa với các trục toạ độ
c) (S) có tâm I(6;-8;3) và tiếp xúc với Oz
d) (S) có r=2 tiếp xúc (Oyz) và có tâm nằm trên tia Ox
Trong không gian tọa độ Oxyz cho mặt cầu (S) có tâm I(1;-2;3) và đường thẳng d có phương trình x = 1 + 2 t y = - 1 - t z = 1 + 2 t . Biết rằng mặt cầu (S) tiếp xúc với đường thẳng d. Viết phương trình mặt cầu (S).
Trong không gian với hệ trục Oxyz, cho mặt cầu (S) có tâm I (0; -2; 1) và mặt phẳng (P): x + 2y - 2z + 3 = 0. Biết mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có diện tích là 2π. Viết phương trình mặt cầu (S).
A. ( S ) : x 2 + ( y + 1 ) 2 + ( z + 1 ) 2 = 3
B. ( S ) : x 2 + ( y + 2 ) 2 + ( z + 1 ) 2 = 1
C . ( S ) : x 2 + ( y + 2 ) 2 + ( z - 1 ) 2 = 3
D. ( S ) : x 2 + ( y + 2 ) 2 + ( z + 1 ) 2 = 2
Chọn C
Ta có h = d(I, (P)) = 1
Gọi (C) là đường tròn giao tuyến có bán kính r.
Vì S = r2.π = 2π <=> r = √2
Mà R2 = r2 + h2 = 3 => R = √3
Vậy phương trình mặt cầu tâm i (0; -2; 1) và bán kính R = √3
Bài tập 2 : Viết phương trình mặt cầu (S) , trong các trường hợp sau(có hình vẽ) a) (S) qua A(3;1;0) và tâm I (5;5;0) thuộc trục . b) (S) có tâm Onvà tiếp xúc mặt phẳng(a): 16x-15y-12z+75=0 . c) (S) có tâm I(-1;2;0) và có một tiếp tuyến là đường thẳng denta: x+1/-1=y-1/1=z/-3
a.
\(\overrightarrow{AI}=\left(2;4;0\right)\Rightarrow R^2=AI^2=20\)
Phương trình (S):
\(\left(x-5\right)^2+\left(y-5\right)^2+z^2=20\)
b.
\(R=d\left(O;\left(\alpha\right)\right)=\dfrac{\left|16.0-15.0-12.0+75\right|}{\sqrt{16^2+15^2+12^2}}=3\)
Phương trình (S): \(x^2+y^2+z^2=9\)
c.
Đường thẳng \(\Delta\) qua \(A\left(-1;1;0\right)\) và nhận \(\overrightarrow{u}=\left(-1;1;-3\right)\) là 1 vtcp
\(\overrightarrow{AI}=\left(0;1;0\right)\)
\(R=d\left(I;\Delta\right)=\dfrac{\left|\left[\overrightarrow{AI};\overrightarrow{u}\right]\right|}{\left|\overrightarrow{u}\right|}=\dfrac{\sqrt{10}}{\sqrt{11}}\)
Phương trình (S): \(\left(x+1\right)^2+\left(y-2\right)^2+z^2=\dfrac{10}{11}\)
Cho I(4;-4;1). Viết phương trình mặt cầu (S) tâm I sao cho (S) cắt mặt phẳng (Oxy) theo một đường tròn có bán kính r = 2 .
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(1;-1;1) và mặt phẳng (P): 2x - y + 2z + 1 = 0. Biết (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính bằng 3. Viết phương trình của mặt cầu (S).
A. ( x - 1 ) 2 + ( y + 1 ) 2 + ( z - 1 ) 2 = 13
B. ( x - 1 ) 2 + ( y + 1 ) 2 + ( z - 1 ) 2 = 169
C. ( x + 1 ) 2 + ( y - 1 ) 2 + ( z + 1 ) 2 = 169
D. ( x + 1 ) 2 + ( y - 1 ) 2 + ( z + 1 ) 2 = 169
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S) tâm I(1;2;3) và mặt phẳng
(P): 2x - y - 2z + 12 = 0. Biết mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn
có chu vi 6 π . Viết phương trình mặt cầu.
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S) tâm I(1;2;3) và mặt phẳng (P): 2x-y-2z+12=0. Biết mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn có chu vi 6 π .Viết phương trình mặt cầu
A. ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 8
B. ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 13
C. ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 9
D. ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 12
viết phương trình mặt cầu (S) có tâm I (3;-4;2) và tiếp xúc với mặt phẳng Oxy
Do (S) tiếp xúc Oxy \(\Rightarrow R=\left|z_I\right|=2\)
Phương trình (S):
\(\left(x-3\right)^2+\left(y+4\right)^2+\left(z-2\right)^2=4\)
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I nằm trên tia Ox bán kính bằng 3 và tiếp xúc với mặt phẳng (Oyz). Viết phương trình mặt cầu (S).
A. x 2 + y 2 + z - 3 2 = 9
B. x 2 + y 2 + z + 3 2 = 9
C. x - 3 2 + y 2 + z 2 = 3
D. x - 3 2 + y 2 + z 2 = 9
Chọn D.
Phương pháp: Tìm tâm và bán kính mặt cầu.
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I nằm trên tia Ox bán kính bằng 3 và tiếp xúc với mặt phẳng (Oyz). Viết phương trình mặt cầu (S).