Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ctvhoc24h
Xem chi tiết
Nguyễn Việt Hoàng
8 tháng 11 2019 lúc 21:29

Từ giả thiết , ta có :

\(xyz=\left(1-x\right)\left(1-y\right)\left(1-z\right)\left(1\right)\)

\(\Rightarrow1=\left(\frac{1}{x}-1\right)\left(\frac{1}{y}-1\right)\left(\frac{1}{z}-1\right)\)

Áp dụng bất đẳng thức sau : \(abc\le\left(\frac{a+b+c}{3}\right)^3\) ta có :

\(1=\left(\frac{1}{x}-1\right)\left(\frac{1}{y}-1\right)\left(\frac{1}{z}-1\right)\le\left(\frac{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-3}{3}\right)^3\)

\(\Rightarrow3\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-3\)

\(\Rightarrow6\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\Rightarrow6xyz\le xy+yz+zx\left(2\right)\)

Từ ( 1 ) và ( 2 ) suy ra:

\(3-3\left(x+y+z\right)+3\left(xy+yz+zx\right)=6xyz\le xy+yz+zx\)

\(\Rightarrow0\ge3-3\left(x+y+z\right)+2\left(xy+yz+zx\right)\)

Cộng 2 vế của bất đẳng thức trên cho \(\left(x^2+y^2+z^2\right)\)ta được:

\(x^2+y^2+z^2\ge\left(x+y+z\right)^2-3\left(x+y+z+3\right)=\left(x+y+z-\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu '' = '' xảy ra khi và chỉ khi \(x=y=z=\frac{1}{2}\) 

Khách vãng lai đã xóa
Nguyễn Đức Hiếu
10 tháng 11 2019 lúc 16:21

ta có:

xyz=(1-x).(1-y).(1-z)                                 (1)

=>1=(1:x-1).(1:y-1).(1:z-1)

Khách vãng lai đã xóa
Bach Mai Phuong
Xem chi tiết
Nhật đẹp trai
5 tháng 3 2020 lúc 16:53

cậu tự mà làm đi sao cứ bắt người khác làm hộ vậy

Khách vãng lai đã xóa
N.T.M.D
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 4 2021 lúc 18:40

Do \(x\in\left[-1;2\right]\Rightarrow\)\(\left(x+1\right)\left(x-2\right)\le0\Leftrightarrow x^2\le x+2\)

Tương tự: \(y^2\le y+2\) ; \(z^2\le z+2\)

Cộng vế: \(x^2+y^2+z^2\le x+y+z+6=6\) (đpcm)

Mặt khác \(x;y;z\in\left[-1;2\right]\Rightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)\ge0\)

\(\Leftrightarrow xyz+xy+yz+zx+x+y+z+1\ge0\)

\(\Leftrightarrow xyz+xy+yz+zx+1\ge0\)

\(\Leftrightarrow2xyz+2\ge-2\left(xy+yz+zx\right)\)

\(\Leftrightarrow2xyz+2\ge\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2\)

\(\Leftrightarrow2xyz+2\ge x^2+y^2+z^2\) (đpcm)

Nghiêm Thảo Tâm
Xem chi tiết
Nghiêm Thảo Tâm
Xem chi tiết
Bùi Minh Nguyệt
Xem chi tiết
Phạm Duy
Xem chi tiết
Kem Su
Xem chi tiết
Nguyễn Phương Thảo
6 tháng 2 2020 lúc 19:01

Ta có: \(\left(\sqrt{x+y}\right)^2=\left(\sqrt{x-z}+\sqrt{y-z}\right)^2\)

\(\Leftrightarrow\)\(x+y=x+y-2z+2\sqrt{\left(x-z\right)\left(y-z\right)}\)

\(\Leftrightarrow2z=2\sqrt{\left(x-z\right)\left(y-z\right)}\)

Theo giả thiết, ta có: 

Khách vãng lai đã xóa
Nguyễn Phương Thảo
6 tháng 2 2020 lúc 19:09

theo giả thiết, ta có: \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=0\Rightarrow\frac{1}{z}-\frac{1}{x}=\frac{1}{y}\)\(\Rightarrow\frac{x-z}{zx}=\frac{1}{y}\Rightarrow x-z=\frac{zx}{y}\)

Tương tự, ta có: \(y-z=\frac{zy}{x}\)

Do đó: \(2\sqrt{\left(x-z\right)\left(y-z\right)}=2\sqrt{\frac{zx}{y}.\frac{zy}{x}}=2z\) (1)

ta có: \(\left(\sqrt{x+y}\right)^2=\left(\sqrt{x-z}+\sqrt{y-z}\right)^2\)

\(\Leftrightarrow2z=2\sqrt{\left(x-z\right)\left(y-z\right)}\)(2)

Thay (2) vào (1) ta thấy (2) luôn đúng

Suy ra ĐPCM

Khách vãng lai đã xóa
ST
6 tháng 2 2020 lúc 19:09

Vì \(x>0,y>0\Rightarrow\frac{1}{x}>0;\frac{1}{y}>0\)

mà \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=0\Rightarrow\frac{1}{z}=\frac{1}{x}+\frac{1}{y}\Rightarrow\frac{1}{z}>0\Rightarrow z>0\)

Ta có: \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=0\Leftrightarrow yz+zx-xy=0\)

\(\Leftrightarrow-z^2=-z^2+yz+zx-xy=-\left(x-z\right)\left(y-z\right)\)

\(\Leftrightarrow z^2=\left(x-z\right)\left(y-z\right)>0\)

\(\Rightarrow z=\sqrt{\left(x-z\right)\left(y-z\right)}\left(z>0\right)\)

Lại có: \(x+y=x-z+y-z+2z\)

\(=\left(x-z\right)+\left(y-z\right)+2\sqrt{\left(x-z\right)\left(y-z\right)}=\left(\sqrt{x-z}+\sqrt{y-z}\right)^2\)

Suy ra \(\sqrt{x+y}=\sqrt{x-z}+\sqrt{y-z}\) (ĐPCM)

Khách vãng lai đã xóa
Jenny phạm
Xem chi tiết
Nguyệt
17 tháng 12 2018 lúc 12:16

\(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+az}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

\(\Leftrightarrow\frac{x}{a}+\frac{y}{b}=\frac{y}{b}+\frac{z}{c}=\frac{z}{c}+\frac{x}{a}\)

\(\hept{\begin{cases}\frac{x}{a}+\frac{y}{b}=\frac{y}{b}+\frac{z}{c}\Rightarrow\frac{x}{a}=\frac{z}{c}\\\frac{z}{c}+\frac{x}{a}=\frac{y}{b}+\frac{z}{c}\Rightarrow\frac{x}{a}=\frac{y}{b}\\\frac{x}{a}+\frac{y}{b}=\frac{z}{c}+\frac{x}{a}\Rightarrow\frac{y}{b}=\frac{z}{c}\end{cases}}\Rightarrow\frac{x}{a}=\frac{z}{c}=\frac{y}{b}.\text{đăt}k=\frac{x}{a}=\frac{z}{c}=\frac{y}{b}\Rightarrow x=ak,z=ck,y=bk\)

ta có: \(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{k^2.\left(x^2+y^2+z^2\right)}{\left(x^2+y^2+z^2\right)}=k^2\Rightarrow k^2=2k\Rightarrow k^2-2k=0\Rightarrow k.\left(k-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}k=0\\k=2\end{cases}\text{mà a,b,c và x,y,z khác 0. }\Rightarrow k=2\Rightarrow x=2a,y=2b,z=2c}\)

p/s: bài nì khó chơi vc =.=" sai sót bỏ qua ^^'

tại sao k^2 lại bằng 2k

Khách vãng lai đã xóa

Vì x, y, z khác 0

=> xy khác 0 ; yz khác 0  ;  zx khác 0

Theo bài ra ta thấy : đổi chỗ của tử số và mẫu số thì đẳng thức vẫn xảy ra nên ta có:

ay+bx/xy=bz+cy/yz=cx+az/zx=a^2+b^2+c^2/x^2+y^2+z^2                                        (3)

=>a/x    +    b/y   =    b/y     +    c/z    =       c/z     +    a/x

=>  a/x  =  b/y  =c/z

Đặt   a/x  =   b/y   =    c/z  =  k ta suy ra

x=ak; y=bk, z=ck

Ta có : 

ay+bx/xy =  a.bk+b.ak/ak.bk  =   2.abk/abk.k =  2/k                                       (1)

Lại có : a^2+b^2+c^2/x^2+y^2+z^2

          =  a^2+b^2+c^2/k^2 ( a^2 +b^2 +c^2 )

         =1/k^2                                                                                                    (2)

(1)(2)(3) => 2/k = 1/k^2

             =>k^2/k=1/2

             =>k=1/2

Với k=1/2  =>x=  1/2 .a ; y  = 1/2  b  ;  z= 1/2 .c

Vậy với mọi x, y, z thỏa mãn điều kiện trên thì mọi kết quả đều đúng.

Hãy bày tỏ cảm xúc và bài làm của mình nha.Trân thành cảm ơn.

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 9 2019 lúc 11:28

Chọn D