Cho (S) là mặt cầu tâm I(3;0;0) và tiếp xức với mặt phẳng (P) có phương trình 2x - 2y - z + 3 = 0. Khi đó, bán kính của (S) là
A. 6
B. 4
C. 2
D. 3
Cho mặt cầu (S) có tâm I(1;2;-1) và bán kính R=3. Phương trình mặt cầu (S’) đối xứng với mặt cầu (S) qua gốc tọa độ là:
A. ( x - 1 ) 2 + ( y - 2 ) 2 + ( z + 1 ) 2 = 9
B. ( x + 1 ) 2 + ( y + 2 ) 2 + ( z - 1 ) 2 = 9
C. x 2 + y 2 + z 2 - 2x - 4y + 2z - 3 = 0
D. x 2 + y 2 + z 2 = 9
Đáp án B
Mặt cầu (S’) đối xứng với mặt cầu (S) qua gốc tọa độ nên mặt cầu (S’) có tâm I’(-1;-2; 1) đối xứng với I qua gốc O và có bán kính R’ = R = 3.
Phương trình mặt cầu (S’) là: ( x + 1 ) 2 + ( y + 2 ) 2 + ( z - 1 ) 2 = 9
Cho mặt cầu (S) có tâm I và bán kính R = 3. Mặt phẳng (P) cắt mặt cầu theo giao tuyến là đường tròn (C) có chu vi 2ᴨ. Tính khoảng cách d từ tâm I đến mặt phẳng (P).
A. d = 2
B. d = 2 2
C. d = 7 2
D. d = 7
Cho mặt cầu (S) có tâm I(2;1;-1) và tiếp xúc với mặt phẳng ( α ) có phương trình 2x-2y-z +3 = 0. Bán kính mặt cầu (S) là
A. 2 9
B. 2
C. 2 3
D. 4 3
Đáp án B
Ta có: bán kính mặt cầu tâm I tiếp xúc với mặt phẳng ( α ) là khoảng cách từ I đến mặt phẳng
Trong không gian Oxyz, cho mặt cầu (S) có tâm I(1;-2;-3) và đi qua điểm M(-1;0;-2). Phương trình của mặt cầu (S) là:
A. ( x - 1 ) 2 + ( y + 2 ) 2 + ( z + 3 ) 2 = 3
B. ( x + 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 9
C. ( x + 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 3
D. ( x - 1 ) 2 + ( y + 2 ) 2 + ( z + 3 ) 2 = 9
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S) có tâm I(-1;2;0) và bán kính R=3. Phương trình mặt cầu (S) là:
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S) có tâm I(-1;2;0) và bán kính R=3. Phương trình mặt cầu (S) là:
A. ( x + 1 ) 2 + ( y - 2 ) 2 + z 2 = 3
B. ( x + 1 ) 2 + ( y - 2 ) 2 + z 2 = 9
C. ( x - 1 ) 2 + ( y + 2 ) 2 + z 2 = 9
D. ( x + 1 ) 2 + ( y - 2 ) 2 + z 2 = 3
Trong không gian Oxyz, cho mặt cầu S : x 2 + y 2 + z 2 + 2 x − 4 y − 2 z − 3 = 0 . Tọa độ tâm I của mặt cầu (S) là
A. (-1;2;1)
B. (2;-4;-2)
C. (1;-2;-1)
D. (-2;4;2)
Trong không gian Oxyz, cho hai mặt cầu (S) và (S’) có tâm lần lượt là I(-1;2;3), I’(3;-2;1) và có bán kính lần lượt là 4 và 2. Cho điểm M di động trên mặt cầu (S), N di động trên mặt cầu (S’). Khi đó giá trị lớn nhất của đoạn thẳng MN bằng:
A. 8
B. 2
C. 12
D. 6
Đáp án C
Ta có: II' = 6 = R + R'
Ta có: MN ≥ MI + II' + I'N = R + 6 + R' = 12
Dấu bằng xảy ra khi M, I, I', N theo thứ tự nằm trên một đường thẳng. Do đó M là giao điểm của tia đối của tia II' với mặt cầu (S), N là giao điểm của tia đối của tia I’I với mặt cầu (S’). Vậy đáp án đúng là C.
Trong không gian với hệ trục Oxyz, cho mặt cầu (S) có tâm I (0; -2; 1) và mặt phẳng (P): x + 2y - 2z + 3 = 0. Biết mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có diện tích là 2π. Viết phương trình mặt cầu (S).
A. ( S ) : x 2 + ( y + 1 ) 2 + ( z + 1 ) 2 = 3
B. ( S ) : x 2 + ( y + 2 ) 2 + ( z + 1 ) 2 = 1
C . ( S ) : x 2 + ( y + 2 ) 2 + ( z - 1 ) 2 = 3
D. ( S ) : x 2 + ( y + 2 ) 2 + ( z + 1 ) 2 = 2
Chọn C
Ta có h = d(I, (P)) = 1
Gọi (C) là đường tròn giao tuyến có bán kính r.
Vì S = r2.π = 2π <=> r = √2
Mà R2 = r2 + h2 = 3 => R = √3
Vậy phương trình mặt cầu tâm i (0; -2; 1) và bán kính R = √3
Trong không gian Oxyz, cho mặt cầu (S) có phương trình là:
3 x 2 + 3 y 2 + 3 z 2 + 6x - 8y + 15z - 3 = 0
Tìm tọa độ tâm I và bán kính R của mặt cầu (S).
A. I - 1 ; 4 3 ; - 5 2 , R = 361 36
B. I - 1 ; 4 3 ; - 5 2 , R = 19 6
C. I - 3 ; 4 ; - 15 2 , R = 19 6
D. I 3 ; - 4 ; 15 2 , R = 361 36