Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trần thị minh nguyệt
Xem chi tiết
Kiệt Nguyễn
29 tháng 7 2019 lúc 11:54

a) \(A=\frac{2x}{x+3}-\frac{x+1}{3-x}-\frac{3-11x}{x^2-9}\)

\(\Leftrightarrow A=\frac{2x}{x+3}+\frac{x+1}{x-3}-\frac{3-11x}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow A=\frac{2x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{3-11x}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow A=\frac{2x^2-6x}{\left(x+3\right)\left(x-3\right)}+\frac{x^2+4x+3}{\left(x-3\right)\left(x+3\right)}-\frac{3-11x}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow A=\frac{3x^2-13x}{x^2-9}\)

l҉o҉n҉g҉ d҉z҉
14 tháng 10 2020 lúc 17:37

\(A=\frac{2x}{x+3}-\frac{x+1}{3-x}-\frac{3-11x}{x^2-9}\)

a) ĐK : x ≠ ±3

\(=\frac{2x}{x+3}+\frac{x+1}{x-3}-\frac{3-11x}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{2x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{3-11x}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{2x^2-6x}{\left(x-3\right)\left(x+3\right)}+\frac{x^2+4x+3}{\left(x-3\right)\left(x+3\right)}-\frac{3-11x}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{2x^2-6x+x^2+4x+3-3+11x}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{3x^2+9x}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{3x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{3x}{x-3}\)

b) Để A < 2

=> \(\frac{3x}{x-3}< 2\)

<=> \(\frac{3x}{x-3}-2< 0\)

<=> \(\frac{3x}{x-3}-\frac{2x-6}{x-3}< 0\)

<=> \(\frac{3x-2x+6}{x-3}< 0\)

<=> \(\frac{x+6}{x-3}< 0\)

Xét hai trường hợp :

1. \(\hept{\begin{cases}x+6>0\\x-3< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-6\\x< 3\end{cases}}\Leftrightarrow-6< x< 3\)

2. \(\hept{\begin{cases}x+6< 0\\x-3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< -6\\x>3\end{cases}}\)( loại )

Vậy -6 < x < 3

Khách vãng lai đã xóa
33. Nguyễn Minh Ngọc
Xem chi tiết
Nguyễn Huy Tú
8 tháng 3 2022 lúc 14:39

a, Với x >= 0 ; x khác 16 

\(A=\left(\frac{x+5\sqrt{x}-27+\left(3-\sqrt{x}\right)\left(\sqrt{x}+4\right)}{x-16}\right):\frac{1}{\sqrt{x}+4}\)

\(=\left(\frac{x+5\sqrt{x}-27+3\sqrt{x}+12-x-4\sqrt{x}}{x-16}\right):\frac{1}{\sqrt{x}+4}\)

\(=\left(\frac{4\sqrt{x}-15}{x-16}\right):\frac{1}{\sqrt{x}+4}=\frac{4\sqrt{x}-15}{\sqrt{x}-4}\)

b, Ta có \(B=-2A\Rightarrow\sqrt{x}-4=-\frac{8\sqrt{x}-30}{\sqrt{x}-4}\)

\(\Leftrightarrow x-8\sqrt{x}+16=-8\sqrt{x}+30\Leftrightarrow x-14=0\Leftrightarrow x=14\left(tm\right)\)

Khách vãng lai đã xóa
Nguyen Dang Khoa
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 8 2020 lúc 23:25

Bài 1: Sửa đề: \(B=\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Thay x=49 vào biểu thức \(A=\frac{\sqrt{x}+3}{\sqrt{x}-1}\), ta được:

\(A=\frac{\sqrt{49}+3}{\sqrt{49}-1}=\frac{7+3}{7-1}=\frac{10}{6}=\frac{5}{3}\)

Vậy: Khi x=49 thì \(A=\frac{5}{3}\)

b) Sửa đề: Rút gọn biểu thức B

Ta có: \(B=\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\left(\frac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\frac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\frac{x+2\sqrt{x}-\sqrt{x}-2}{\sqrt{x}\cdot\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)-\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}}\)

c) Ta có: \(\frac{B}{A}=\frac{\sqrt{x}+1}{\sqrt{x}}:\frac{\sqrt{x}+3}{\sqrt{x}-1}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}}\cdot\frac{\sqrt{x}-1}{\sqrt{x}+3}\)

\(=\frac{x-1}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

Để \(\frac{B}{A}< \frac{3}{4}\) thì \(\frac{x-1}{\sqrt{x}\left(\sqrt{x}+3\right)}-\frac{3}{4}< 0\)

\(\Leftrightarrow\frac{4\left(x-1\right)-3\sqrt{x}\left(\sqrt{x}+3\right)}{4\sqrt{x}\left(\sqrt{x}+3\right)}< 0\)

\(4\sqrt{x}\left(\sqrt{x}+3\right)>0\forall x\) thỏa mãn ĐKXĐ

nên \(4\left(x-1\right)-3\sqrt{x}\left(\sqrt{x}+3\right)< 0\)

\(\Leftrightarrow4x-4-3x-9\sqrt{x}< 0\)

\(\Leftrightarrow x-9\sqrt{x}-4< 0\)

\(\Leftrightarrow x^2-9x-4< 0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\frac{9}{2}+\frac{81}{4}-\frac{97}{4}< 0\)

\(\Leftrightarrow\left(x-\frac{9}{2}\right)^2< \frac{97}{4}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-\frac{9}{2}>-\frac{\sqrt{97}}{2}\\x-\frac{9}{2}< \frac{\sqrt{97}}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>\frac{9-\sqrt{97}}{2}\\x< \frac{9+\sqrt{97}}{2}\end{matrix}\right.\)

Kết hợp ĐKXĐ, ta được:

\(3< x< \frac{9+\sqrt{97}}{2}\)

Tv Kazu
Xem chi tiết
BoY
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
8 tháng 8 2020 lúc 19:31

Bạn viết biểu thức A ra đi rồi bọn mình mới làm được chứ -.-

Khách vãng lai đã xóa
KCLH Kedokatoji
8 tháng 8 2020 lúc 19:37

Đk : \(x\ne\pm3\)

Để B>A

\(\Leftrightarrow\frac{3}{x+3}>4\)

Rõ ràng: \(x+3>0\)

\(\Rightarrow\frac{3}{x+3}>4\)

\(\Leftrightarrow3>4\left(x+3\right)\)

\(\Leftrightarrow3>4x+12\)

\(\Leftrightarrow-9>4x\)

\(\Leftrightarrow x< \frac{-9}{4}\)

KL: \(x\in Z,x< \frac{-9}{4},x\ne\pm3\)

Khách vãng lai đã xóa
Vũ Đức Thuyết
8 tháng 8 2020 lúc 20:11

                                         okiiiii bạn ơi !!!!!!!!!

                B>A =>\(\frac{3}{x+3}>\frac{x}{x+3}suyra\frac{3}{x+3}-\frac{x}{x+3}>0\)0

                                                          <=>\(\frac{3-x}{x+3}>0\)

Trường hợp cả T và M đều dương thì ta có

      \(\hept{\begin{cases}3-x>0\\x+3>0\end{cases}}< =>\hept{\begin{cases}x< 3\\x>-3\end{cases}< =>-3< x< 3}\)(x nhận các giá tri  nguyên trong khoảng này)

 Trường hợp cả T và M đều âm thì ta có 

        \(\hept{\begin{cases}3-x< 0\\3+x< 0\end{cases}< =>}\hept{\begin{cases}x>3\\x< -3\end{cases}}< =>3< x< -3\) (loại   ) 

 Vậy x\(\in\left(-2;-1;0;1;2\right)\)thì B>A

Khách vãng lai đã xóa
Kang tae oh
Xem chi tiết
BoY
Xem chi tiết
iu
Xem chi tiết
Trí Tiên亗
1 tháng 3 2020 lúc 15:08

a) Ta thấy x=-2 thỏa mãn ĐKXĐ của B.

Thay x=-2 và B ta có :

\(B=\frac{2\cdot\left(-2\right)+1}{\left(-2\right)^2-1}=\frac{-3}{3}=-1\)

b) Rút gọn : 

\(A=\frac{3x+1}{x^2-1}-\frac{x}{x-1}\)

\(=\frac{3x+1-x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{-x^2+2x+1}{\left(x-1\right)\left(x+1\right)}\)

Xấu nhỉ ??

Khách vãng lai đã xóa
Nguyễn Thị Thanh Tâm
Xem chi tiết
OwO
20 tháng 5 2021 lúc 12:57

a) Ta có:

\(A=\frac{\sqrt{x}-3}{x-\sqrt{x}+1}\)

\(A=\frac{\sqrt{4}-3}{4-\sqrt{4}+1}\)

\(A=\frac{2-3}{4-2+1}=-\frac{1}{3}\)

Khách vãng lai đã xóa
OwO
20 tháng 5 2021 lúc 12:59

b) đk: \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)

\(B=\left(\frac{3\sqrt{x}+6}{x-9}-\frac{2}{\sqrt{x}-3}\right):\frac{1}{\sqrt{x}+3}\)

\(B=\frac{3\sqrt{x}+6-2\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\left(\sqrt{x}+3\right)\)

\(B=\frac{3\sqrt{x}+6-2\sqrt{x}-6}{\sqrt{x}-3}\)

\(B=\frac{\sqrt{x}}{\sqrt{x}-3}\)

Khách vãng lai đã xóa
OwO
20 tháng 5 2021 lúc 13:04

c) \(P=AB\)

\(P=\frac{\sqrt{x}-3}{x-\sqrt{x}+1}\cdot\frac{\sqrt{x}}{\sqrt{x}-3}\)

\(P=\frac{\sqrt{x}}{x-\sqrt{x}+1}\)

Vì \(\left|P\right|=P\Leftrightarrow\orbr{\begin{cases}P=P\\P=-P\end{cases}}\Leftrightarrow\orbr{\begin{cases}0=0\left(tm\right)\\\sqrt{x}=-\sqrt{x}\end{cases}}\Rightarrow\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)

Khách vãng lai đã xóa