trong mp oxy cho tam giac ABC vuông tại A có 4AB=3AC. Gọi E(0;-2) là chân đường phân giác trong góc ABC, biết phương trình BC : 3x+4y-7=0. Tìm tọa độ điểm A
Cho tam giác ABC vuông tại A biết BC=20cm và 4AB=3AC. Tính AB,AC
\(\Delta ABC\)vuông tại \(A\Leftrightarrow AB^2+AC^2=BC^2=400\)
\(4AB=3AC\Leftrightarrow\frac{AB}{3}=\frac{AC}{4}\Leftrightarrow\frac{AB^2}{9}=\frac{AC^2}{16}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{400}{25}=16\)
\(\Rightarrow\hept{\begin{cases}AB^2=9.16=144\Leftrightarrow AB=12\\AC^2=16.16\Leftrightarrow AC=16\end{cases}}\)
Trong mp toạ độ oxy, cho tam giác ABC vuông tại A, BC có pt là y=0, M là trung điểm cạnh BC, điểm E thuộc đoạn MC. Gọi O(2;1/2) và I(7;8) lần lượt là tâm đường tròn ngoịa tiếp tam giác ABE và ACE. Tìm toạ độ E,M biết rằng hoành độ điểm E lớn hơn hoành độ điểm M
Cho tam giác ABC vuông tại A biết BC=20cm và 4AB=3AC. Tính AB và AC
\(4AB=3AC\Rightarrow\frac{AB}{3}=\frac{AC}{4}\Rightarrow\frac{AB^2}{9}=\frac{AC^2}{16}\)
Áp dụng tính chất của dãy tỉ số bằng nhau và định lý pytago ta có:
\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{BC^2}{25}=\frac{400}{25}=16\)
\(\Rightarrow\frac{AB^2}{9}=16\Rightarrow AB^2=144\Rightarrow AB=12\left(cm\right)\)
\(\frac{AC^2}{16}=16\Rightarrow AC^2=16^2\Rightarrow AC=16\left(cm\right)\)
Cho tam giác ABC vuông tại A biết BC=20cm và 4AB=3AC. Tính AB và AC
Áp dụng định lý Py-ta-go cho tam giác ABC vuông tại A,ta có:
BC2=AB2+CA2
<=>400=AB2+CA2
Theo giả thiết: 4AB=3AC
=>AB3=AC4
=>AB29=AC216
Theo tính chất dãy tỉ số bằng nhau,ta có:
AB29=AC216=AB2+AC29+16=BC225=40025=16
Với AB29=16=>AB=12
Với AC216=16=>AC=16
Vậy AB=12cm
AC=16cm
🤬★๖ۣۜ V ๖ۣۜ★•™❄(TEAM★BTS)❄•🧨 chép mạng nhớ ghi nguồn
ta có tam giác ABC vuông tại A => \(AB^2+AC^2=BC^2=20^2=400\) (1)
lại có 4AB = 3AC hay \(AB=\frac{3}{4}AC\)
thế \(AB=\frac{3}{4}AC\)vào (1) ta được:
\(\left(\frac{3}{4}AC\right)^2+AC^2=400\)
\(\frac{9}{16}AC^2+AC^2=400\)
\(\frac{25}{16}AC^2=400\)
\(AC^2=256\)
\(\orbr{\begin{cases}AC=\sqrt{256}=16\\AC=-\sqrt{256}=-16\left(loai\right)\end{cases}}\)
Vậy AC = 16 (cm)
=> AB = \(\frac{3}{4}AC=\frac{3}{4}.16=12\)(cm)
Cho tam giac abc vuong tai a tinh canh bc biet 4ab=3ac va ab+ac=70
4AB=3AC và AB+AC=70
=>AB=30cm; AC=40cm
=>BC=50cm
Cho tam giác ABC vuông tại A. Biết BC = 20 cm và 4AB = 3AC. Tính độ dài cạnh AB, AC
Cho tam giác ABC vuông tại 4AB=3AC và BC=15 cm. Tính AB,AC
Vay 40% so tien bao la 2000 dong
Vậy số tiền bao la: 2000:40x100=5000 dong
nha ban
cho tam giác ABC vuông tại A.Tính cạnh BC nếu biết :,AB/3=AC/4 và AB+AC=14
b,4AB=3AC và AB+AC=70
c,AB/AC=4/3 và 4AB+3AC=25căn bậc 2
1.trong mp Oxy, tam giac ABC co A( 2;4) B(4;8) C(13;2) pttq duong phan giac trong goc A la ?
2.trong mp Oxy,ptdt di qua (-2;0) va tao vs duong thang d : x+3y-3=0 mot goc 45o la ?
\(\overrightarrow{AB}=\left(2;4\right);\overrightarrow{AC}=\left(11;-2\right);\overrightarrow{BC}=\left(9;-6\right)\)
\(\Rightarrow AB=2\sqrt{5};AC=5\sqrt{5};BC=3\sqrt{13}\)
Gọi D là chân đường phân giác trong góc A trên BC
\(\frac{DB}{DC}=\frac{AB}{AC}=\frac{2}{5}\Rightarrow BD=\frac{2}{5}CD=\frac{2}{7}BC\Rightarrow\overrightarrow{BD}=\frac{2}{7}\left(9;-6\right)\)
\(\Rightarrow D\left(\frac{46}{7};\frac{44}{7}\right)\Rightarrow\overrightarrow{AD}=\left(\frac{32}{7};\frac{16}{7}\right)=\frac{16}{7}\left(2;1\right)\)
\(\Rightarrow\) Đường thẳng AD nhận \(\left(1;-2\right)\) là 1 vtpt
Phương trình AD:
\(1\left(x-2\right)-2\left(y-4\right)=0\Leftrightarrow x-2y+6=0\)
2.
Đường thẳng d có 1 vtpt là \(\left(1;3\right)\)
Gọi vtpt của d' là \(\left(a;b\right)\Rightarrow cos45^0=\frac{\left|a+3b\right|}{\sqrt{10\left(a^2+b^2\right)}}=\frac{1}{\sqrt{2}}\)
\(\Leftrightarrow a^2+6ab+9b^2=5a^2+5b^2\)
\(\Leftrightarrow4a^2-6ab-4b^2=0\Leftrightarrow\left(2a+b\right)\left(a-2b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}b=-2a\\a=2b\end{matrix}\right.\)
Chọn \(a=2\Rightarrow\left[{}\begin{matrix}b=-4\\b=1\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn:
\(\left[{}\begin{matrix}1\left(x+2\right)-2\left(y-0\right)=0\\2\left(x+2\right)+1\left(y-0\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x-2y+2=0\\2x+y+4=0\end{matrix}\right.\)