Cho n số x1,x2,x3,...,xn mỗi số thuộc {1;-1}. Chứng minh rằng nếu x1x2 + x2x3 + x3x4 +...+xn-1xn + xnx1 = 0 thì n chia hết cho 4.
Cho n số nguyên X1; X2; X3;...;Xn trong đó mỗi số chỉ là 1 hoặc -1. Chứng minh rằng nếu X1.X2+X2.X3+...+Xn-1.Xn+Xn.X1=0 thì n chia hết cho 4
Cho n số tự nhiên x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1 . x2 + x2 . x3 + ... +xn . x1 = 0 thì n chia hết cho 4
Câu hỏi của Thi Bùi - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo link trên nhé!
Bài 1:8x-0,4=7,8*x+402
Bài 2:Ba lớp 6 có tất cả 120 học sinh. Số học sinh lớp 6A bằng 1/2 tổng số học sinh hai lớp 6B và 6C.Lớp 6B ít hơn lớp 6C là 6 học sinh. Tính số học sinh mỗi lớp.
Bài 3 Cho n số X1,X2,X3,...,Xn mỗi số có giá trị bằng 1 hoặc -1. CMR nếu X1*X2+X2*X3+...+Xn-1*Xn+Xn*X1=0 thì chia hết cho 4
Lưu ý: (X1,X2,X3,...,Xn) là dãy số liên tiếp nha!
Bài 1 :
8x - 0,4 = 7,8*x + 402
8x - 7,8*x = 402 + 0,4
0,2*x = 402,04
x= 402,04 : 0,2
x = 2012
Bài 2
Theo bài ra , số học sinh lớp 6A bằng 1/2 tổng số học sinh hai lớp 6B và 6C
=> Số học sinh lớp 6A bằng 1/3 số học sinh của cả 3 lớp
Số học sinh lớp 6A là :
120 x 1/3 = 40 học sinh
Tổng số học sinh lớp 6B và 6C là :
120 - 40 = 80 học sinh
Số học sinh lớp 6B là :
( 80 - 6 ) : 2 = 37 học sinh
Số học sinh lớp 6C là :
37 + 6 = 43 học sinh
cho n số x1,x2,x3..,xn mỗi số nhận giá trị 1 hoặc -1 . Chungws minh rằng nếu x1.x2+x3.x4+...+xn.x1=0 thì n chia hết cho 4
Câu hỏi của Thi Bùi - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo link trên nhé!
Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.
giải được tui cho chàng vỗ tay
Cho n số x1, x2, ..., xn ,mỗi số nhận giá trị 1 hoặc -1.
Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.
Lời giải:
Vì $x_1,x_2,...,x_n$ nhận giá trị $1$ hoặc $-1$ nên $x_1x_2,x_2x_3,...,x_nx_1$ nhận giá trị $1$ hoặc $-1$
Để tổng $x_1x_2+...+x_nx_1=0$ thì số số hạng nhận giá trị $1$ bằng số số hạng nhận giá trị $-1$
Gọi số số hạng nhận giá trị $1$ và số số hạng nhận giá trị $-1$ là $k$
Tổng số số hạng: $n=k+k=2k$
Lại có:
$(-1)^k1^k=x_1x_2.x_2x_3...x_nx_1=(x_1x_2...x_n)^2=1$
$\Rightarrow k$ chẵn
$\Rightarrow n=2k\vdots 4$
Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.
Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.
cho n số: x1;x2;x3;...;xn mỗi số =1hoac-1.Biết rằng tổng của n tích:x1*x2;x2*x3;x3*x4;...;xn*x1=0
CMR n chia hết cho 4
Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.
Câu hỏi của Thi Bùi - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo link trên.