Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Trần Linh Anh
Xem chi tiết
Nguyen Van Khanh
Xem chi tiết
HELP ME
Xem chi tiết
Vương Hương Giang
22 tháng 12 2021 lúc 16:14

a, Với x ≠ 0,x ≠ ± 5 và x ≠ 5/2 thì 
P = [x/(x^2 - 25)  -  (x - 5)/(x^2 + 5x)]  : (2x - 5)/(x^2 + 5x) + x/(x - 5)
<=>P = [x/(x - 5)(x + 5)  -  (x - 5)/x(x+5)] . x(x + 5)/(2x - 5) + x/(x - 5)
=> P = [x^2 - (x - 5)^2]/x(x - 5)(x + 5) . x(x + 5)/(2x - 5) + x/(x - 5)
<=> P = (x - x + 5)(x + x - 5)/(x - 5)(2x - 5) + x/(x - 5)
<=> P = 5(2x - 5)/(x - 5)(2x - 5) + x/(x - 5)
<=> P = 5/(x - 5) + x/(x - 5)
<=> P = (5 + x)/(x - 5)
b, Với x ≠ 0,x ≠ ± 5 và x ≠ 5/2 (x ∈ Z) thì P ∈ Z <=> (5 + x)/(x - 5) ∈ Z
<=> (x - 5 + 10)/(x - 5) ∈ Z
<=> 1 + 10/(x - 5) ∈ Z
<=> 10/(x - 5) ∈ Z
<=> (x - 5) ∈ Ư(10)
<=> x - 5 = 10  <=> x = 15 (TM)
hoặc x - 5 = -10 <=> x = -5  (TM)
hoặc x - 5 = 5  <=> x = 10  (TM)
hoặc x - 5 = -5 <=> x = 0  (TM)
hoặc x - 5 = 2  <=> x = 7  (TM)
hoặc x - 5 = -2  <=> x = 3  (TM)
hoặc x - 5 = -1  <=> x = 4  (TM)
hoặc x - 5 = 1  <=> x = 6  (TM)
Vậy x ∈ {-5,0,3,4,6,7,10,15} thì P ∈ Z

asmr
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 8 2023 lúc 0:13

a: \(A=\left(2\sqrt{5}-3\sqrt{5}+3\sqrt{5}\right)\cdot\sqrt{5}=2\sqrt{5}\cdot\sqrt{5}=10\)

\(B=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)

\(=\sqrt{x}-1+\sqrt{x}=2\sqrt{x}-1\)

b: A=2B

=>\(10=4\sqrt{x}-2\)

=>\(4\sqrt{x}=12\)

=>x=9(nhận)

Ngo Viet Tien
Xem chi tiết
Nguyễn Joke
Xem chi tiết
Nguyễn Minh Tuấn
Xem chi tiết
nguyen van an
Xem chi tiết
Nguyễn Doãn Bảo
30 tháng 1 2016 lúc 21:40

trong nâng cao và phát triển có

Nguyễn Thị Thanh Huyền
Xem chi tiết

a:

ĐKXĐ: x<>2

|2x-3|=1

=>\(\left[{}\begin{matrix}2x-3=1\\2x-3=-1\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=2\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)

Thay x=1 vào A, ta được:

\(A=\dfrac{1+1^2}{2-1}=\dfrac{2}{1}=2\)

b: ĐKXĐ: \(x\notin\left\{-1;2\right\}\)

\(B=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{x^2-x-2}\)

\(=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{\left(x-2\right)\left(x+1\right)}\)

\(=\dfrac{2x\left(x-2\right)+3\left(x+1\right)-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)

\(=\dfrac{2x^2-4x+3x+3-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)

\(=\dfrac{-x+2}{\left(x+1\right)\left(x-2\right)}=-\dfrac{1}{x+1}\)

c: \(P=A\cdot B=\dfrac{-1}{x+1}\cdot\dfrac{x\left(x+1\right)}{2-x}=\dfrac{x}{x-2}\)

\(=\dfrac{x-2+2}{x-2}=1+\dfrac{2}{x-2}\)

Để P lớn nhất thì \(\dfrac{2}{x-2}\) max

=>x-2=1

=>x=3(nhận)