Cho x,y và xy=15; x2 + y2 =18
Không được tính x và y, hãy tính x4 + y4
cho x, y và z là số dương sao cho
{x + xy + y = 8
y + yz + z = 15
z + zx + x = 35}
tìm giá trị của x + y + z + xy
Cho xy+x=15 Tính x và y
1, Cho biết x+y=15 và xy=50. Tính giá trị của các biểu thức:
a. A=x2+y2
b. B=x4+y4
c. C=x2-y2
2, Cho biết x-y=15 và xy=50. Hãy tính x2+y2 ; x2-y2 rồi từ đó suy ra kết quả của x4-y4.
a: \(A=x^2+y^2=\left(x+y\right)^2-2xy=15^2-2\cdot50=115\)
c: \(x-y=\sqrt{\left(x+y\right)^2-4xy}=\sqrt{15^2-4\cdot50}=5\)
\(C=x^2-y^2=\left(x+y\right)\left(x-y\right)=15\cdot5=75\)
Cho x+y=15 và xy=40 tính (x-y)^2 nhớ phải có lời giải nhé.
\(\left(x-y\right)^2=x^2-2xy+y^2=\)
\(=\left(x^2+2xy+y^2\right)-4xy=\)
\(=\left(x+y\right)^2-4xy=15^2-4.40=65\)
Cho x>y và xy=15. Tìm GTNN của biểu thức Q = (x^2 + 1,2xy + y^2) / (x-y)
\(Q=\frac{x^2+1,2xy+y^2}{x-y}=\frac{x^2-2xy+y^2+3,2xy}{x-y}\)
\(=\frac{\left(x-y\right)^2+48}{x-y}=\frac{\left(x-y\right)^2}{x-y}+\frac{48}{x-y}\)
\(=x-y+\frac{48}{x-y}\ge2\sqrt{48}=8\sqrt{3}\)
Cho biết x + y = 15 và xy = 50. Tính giá trị của các biểu thức:
a) A = x2 + y2
b) B = x4 + y4
c) C = x2 − y2
Nếu thay giả thiết thành x − y = 15 và xy = 50. Hãy tính x2 + y2; x2 − y2. Từ đó suy ra kết quả của x4 − y4.
a: \(A=x^2+y^2=\left(x+y\right)^2-2xy=15^2-2\cdot50=125\)
b:\(B=x^4+y^4\)
\(=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=125^2-2\cdot2500\)
=10625
c: \(x-y=\sqrt{\left(x+y\right)^2-4xy}=\sqrt{15^2-4\cdot50}=5\)
\(C=x^2-y^2=\left(x-y\right)\left(x+y\right)=15\cdot5=75\)
cho các số dương x,y,z thỏa mãn xy+x+y=3 và yz+z+y=8 và xz+x+z=15 tính giá trị của P = x+y+z
Tìm x,y nguyên sao cho
a)x(y-3)=15
b)xy-2y+3(x-2)=7
c)xy-3x+y=15
cho các số x,y,z thỏa mãn x+y+z=15 và xy+yz+xz=72. chứng minh 3<=x,y,z<=7