Xác định đa thức bậc ba F(x) biết đa thức đó chia cho x-1 ; x-2 ; x-3 đều có số dư là 6 và F (-1) = -18
Xác định đa thức bậc ba F(x) biết đa thức đó chia cho x-1 ; x-2 ; x-3 đều có số dư là 6 và F (-1) = -18
mk cần rất gấp ạ
Gọi đa thức bậc ba đó là \(F\left(x\right)=ax^3+bx^2+cx+d\)
\(\Rightarrow F\left(-1\right)=-a+b-c+d=-18\)
F(x) cho x -1; x - 2; x - 3 đều có số dư là 6\(\Rightarrow\hept{\begin{cases}ax^3+bx^2+cx+\left(d-6\right)⋮x-1\\ax^3+bx^2+cx+\left(d-6\right)⋮x-2\\ax^3+bx^2+cx+\left(d-6\right)⋮x-3\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}F\left(1\right)=0\\F\left(2\right)=0\\F\left(3\right)=0\end{cases}}\)(định lý Bezout)
\(\Rightarrow\hept{\begin{cases}a+b+c+\left(d-6\right)=0\\8a+4b+2c+\left(d-6\right)=0\\27a+9b+3c+\left(d-6\right)=0\end{cases}}\)
Tịt rồi)): Trưa về suy nghĩ tiếp
Xác định đa thức bậc ba F(x) biết đa thức đó chia cho x - 1 ; x-2 ; x - 3 đề có số dư là 6 và F(-1) = -18
Xin OLM duyệt nhanh ạ, mấy bạn jup jum mink vs
Xác định đa thức f(x), biết f(x) có bậc là 1, f( −1) = 2, f( 3) = −1.
b) Xác định đa thức g(x), biết g(x) có bậc là 2, hệ số cao nhất là 5, g(2)=5 và
g(1)=-1
a) Gọi đa thức cần tìm là \(f\left(x\right)=ax+b\)
Do \(f\left(-1\right)=2\) nên thay \(x=-1\) ta có \(-a+b=2\), hay \(b=a+2\)
Do \(f\left(3\right)=-1\) nên thay \(x=3\) ta có \(3a+b=-1\), suy ra \(3a+a+2=-1\)
\(\Rightarrow4a=-3\Rightarrow a=-\dfrac{3}{4}\Rightarrow b=\dfrac{5}{4}\)
Vậy đa thức cần tìm là \(f\left(x\right)=-\dfrac{3}{4}x+\dfrac{5}{4}\)
b) Gọi đa thức cần tìm là \(g\left(x\right)=5x^2+bx+c\)
Do \(g\left(2\right)=5\) nên thay \(x=2\) ta có \(20+2b+c=5\Rightarrow2b+c=-15\)
\(\Rightarrow c=-15-2b\)
Do \(g\left(1\right)=-1\) nên thay \(x=1\) ta có \(5+b+c=-1\Rightarrow b+c=-6\)
\(\Rightarrow b-2b-15=-6\Rightarrow b=-9\Rightarrow c=3\)
Vậy đa thức cần tìm là \(g\left(x\right)=5x^2-9x+3\)
cho f(x) là 1 đa thức bậc ba . Biết f(1)= 5; f(-1)=7 khi chia cho đa thức x2 +1 thì dư 5x + 4. Tính f(2014)
Giả sử đa thức thương có dạng là ax + b. Khi đó: f(x) = (x2+1)(ax+b) + 5x+4
Bạn lần lượt thay x = 1 và x = -1 vào đa thức trên thì ra hệ pt vs 2 ẩn a, b. cộng tương ứng từng vế của 2 hệ đó lại là tìm được a, b. thay a, b vào đa thức trên, khai triển ra rồi thay x = 2014 là ok
Xác định một đa thức bậc ba f(x) không có hạng tử tự do sao: cho
f(x) - f(x-1)=x2
Xác định đa thức f(x) bậc 3 sao cho khi chia đa thức ấy lần lượt cho các nhị thức (x-1);(x-2);(x-3) đều được dư là 6 và tại x=-1 thì đa thức nhận giá tri bằng -18
Giải giúp mình với.Cảm on nhiều.!!!!!!!!!!!!!!!!!!!!!!!!
tìm đa thức bậc ba f(x) biết f(x) chia hết cho 2x-1 và khi chia cho các đa thức x-1,x+1, x-2 đều có số dư là 7
Gọi \(f\left(x\right)=ax^3+bx^2+cx+d\)
f(x) chia hết cho 2x-1 và khi chia cho các đa thức x-1,x+1, x-2 đều có số dư là 7.
Áp đụng định lý bezout ta có hệ:
\(\left\{\begin{matrix}0,5^3a+0,5^2b+0,5c+d=0\\a+b+c+d=7\\-a+b-c+d=7\\8a+4b+2c+d=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}a=-\frac{56}{9}\\b=\frac{112}{9}\\c=\frac{56}{9}\\d=-\frac{49}{9}\end{matrix}\right.\)
vậy\(f\left(x\right)=-\frac{56}{9}x^3+\frac{112}{9}x^2+\frac{56}{9}x-\frac{49}{9}\)
xác định đa thức 1 biến f(x) biết đa hức f(x) có bậc 2 ,hệ số cao nhất là 1 hệ số tự do là 9 nghiệmcủa đa thức f(x) là 3
GIUP MIK VS,CẢM ƠN!
Cho hai đa thức f(x)=4x-x+2 và g(x)=x +5x-1
a)Tìm đa thức h(x)=f(x)-g(x)
b) xác định bậc của đa thức h(x)
c)Giá trị x=-1 có là nghiêm của da thức h(x) không?
a: h(x)=4x^2-x+2-x^2-5x+1=3x^2-6x+3
b: bậc là 2
c: h(-1)=3+6+3=12
=>x=-1 ko là nghiệm của h(x)