Tính thể tích của vật thể nằm giữa hai mặt phẳng x = 0 ; x = π , biết rằng thiết diện của vật thể với mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x ∈ 0 ; π là một tam giác đều có cạnh là 2 sin x
A. 3
B. π 3
C. 2 3
D. 2 π
Tính thể tích của vật thể nằm giữa hai mặt phẳng x = 0, x = 2 biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x 0 ≤ x ≤ 2 là một nủa hình tròn đường kính 5 x 2 .
A. 4ᴨ
B. ᴨ
C. 3ᴨ
D. 2ᴨ
Chọn A
Nếu S(x) là diện tích thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox thì thể tích của vật thể giới hạn bới hai mặt phẳng x = a và x =b là
Tính thể tích của vật thể nằm giữa hai mặt phẳng x = 0, x = 2, biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x 0 ≤ x ≤ 2 là một nủa hình tròn đường kính 5 x 2 .
A. 4 π
B. π
C. 3 π
D. 2 π
Chọn A
Nếu S(x) là diện tích thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox thì thể tích của vật thể giới hạn bới hai mặt phẳng x = a và x =b là V = ∫ a b S x d x .
Tính thể tích của vật thể nằm giữa hai mặt phẳng x = 0 và x = 3 , biết thiết diện của vật thể cắt bởi mặt phẳng (P) vuông góc với trục tại điểm có hoành độ x ( 0 ≤ x ≤ 3 ) là một hình chữ nhật có độ dài hai cạnh là x và 1 + x 2
A. 1
B. 2
C. 7/3
D. 3
Chọn C.
Ta có diện tích thiết diện của vật thể cắt bởi mặt phẳng (P) là:
S(x) = x 1 + x 2 nên thể tích cần tính là:
Tính thể tích V của vật thể nằm giữa hai mặt phẳng x = 0 và x = π , biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x 0 ≤ x ≤ π là một tam giác đều cạnh là 2 sin x
A. V = 3
B. V = 3 π
C. V = - 2 π 3
D. V = 2 3
Đáp án D
Diện tích tam giác bằng 2 sin x 2 3 4 = 3 sin x .
Suy ra thể tích cần tích bằng V = ∫ 0 π 3 sin x d x = - 3 cos x 0 π = 2 3 .
Tính thể tích V của vật thể nằm giữa hai mặt phẳng x = 0 và x = π , biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x 0 ≤ x ≤ π là một tam giác đều cạnh là 2 s i n x
A. V = 3
B. V = 3 π
C. V = 2 π 3
D. V = 2 3
Tính thể tích của vật thể nằm giữa hai mặt phẳng x = 0 và x = 1, biết thiết diện của vật thể cắt mặt phẳng (P) vuông góc với trục Ox tại điểm có hoành độ x ( 0 ≤ x ≤ 1 ) là một hình chữ nhật có độ dài lần lượt là x và ln ( x 2 + 1 )
A. V = ln 2 − 1 2 .
B. V = ln 2 - 1 2 .
C. V = 1 2 l n 2 − 1.
D. V = l n 2 − 1.
Tính thể tích của vật thể nằm giữa hai mặt phẳng x = 0 và x = 1, biết thiết diện của vật thể cắt mặt phẳng (P) vuông góc với trục Ox tại điểm có hoành độ x ( 0 ≤ x ≤ 1 ) là một hình chữ nhật có độ dài lần lượt là x và ln ( x 2 + 1 )
A. V = ln 2 − 1 2 .
B. V = ln 2 − 1 2 .
C. V = 1 2 l n 2 − 1.
D. V = l n 2 − 1.
Đáp án B.
Diện tích hình chữ nhật là S ( x ) = x ln ( x 2 + 1 ) .
Thể tích cần tính là
V = ∫ 0 1 S ( x ) d x = ∫ 0 1 x ln ( x 2 + 1 ) d x = ln 2 − 1 2
(Chú ý: sử dụng MTCT để kiểm tra kết quả).
Cho một vật thể nằm giữa hai mặt phẳng x = 0; x = π , biết rằng mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x 0 ≤ x ≤ π cắt vật thể theo thiết diện là một tam giác đều cạnh 2 sin x . Thể tích của vật thể đó là:
A. 3 π 2
B. 2 3
C. 3 2
D. 2 π 3
Chọn B
Nếu S(x) là diện tích thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox thì thể tích của vật thể giới hạn bởi hai mặt phẳng x = a và x = b là
V = ∫ a b S x d x
Thể tích V của vật thể nằm giữa hai mặt phẳng x = 0 và x = π, biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x (0 ≤ x ≤ π) là một tam giác đều cạnh 2 sin x
A. V = 3
B. V = 3π
C. 2 3
D. 2 π 3
Đáp án C
Do thiết diện là một tam giác đều nên diện tích thiết diện là: