Chọn B
Nếu S(x) là diện tích thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox thì thể tích của vật thể giới hạn bởi hai mặt phẳng x = a và x = b là
V = ∫ a b S x d x
Chọn B
Nếu S(x) là diện tích thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox thì thể tích của vật thể giới hạn bởi hai mặt phẳng x = a và x = b là
V = ∫ a b S x d x
Thể tích V của vật thể nằm giữa hai mặt phẳng x = 0 và x = π, biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x (0 ≤ x ≤ π) là một tam giác đều cạnh 2 sin x
A. V = 3
B. V = 3π
C. 2 3
D. 2 π 3
Tính thể tích vật thể giới hạn bởi hai mặt phẳng x = 0 , x = π . Biết rằng thiết diện của vật thể cắt bởi mặt phẳng vuông góc với Ox tại điểm có hoành độ x 0 ≤ x ≤ π là một tam giác vuông cân có cạnh huyền bằng sin x + 2 .
A.
B.
C.
D.
Tính thể tích của vật thể giới hạn bởi hai mặt phẳng x = 0 ; x = π Biết rằng thiết diện của vật thể cắt bởi mặt phẳng vuông góc với Ox tại điểm có hoành độ x ( 0 ≤ x ≤ π ) là một tam giác vuông cân có cạnh huyền bằng sinx+2
Biết rằng thiết diện của vật thể với mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x ( 0 ≤ x ≤ 3 ) là một tam giác đều có cạnh là 4 x + x . Khi đó thể tích của vật thể nằm giữa hai mặt phẳng x=0 ; x=3 là
Tính thể tích của vật thể nằm giữa hai mặt phẳng x = 0, x = 2, biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x 0 ≤ x ≤ 2 là một nủa hình tròn đường kính 5 x 2 .
A. 4 π
B. π
C. 3 π
D. 2 π
Cho vật thể H nằm giữa hai mặt phẳng x=0;x=1. Biết rằng thiết diện của vật thể H cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x( 0 ≤ x ≤ 1 ) là một tam giác đều có cạnh là 4 ln ( 1 + x ) Giả sử thể tích V của vật thể có kết quả là V = a b ( c ln 2 - 1 ) với a, b, c là các số nguyên. Tính tổng S= a 2 - a b + c
Cho vật thể H nằm giữa hai mặt phẳng x = 0; x = 1 . Biết rằng thiết diện của vật thể H cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x là một tam giác đều có cạnh là ln ( 1 + x ) 4 . Giả sử thể tích V của vật thể có kết quả là V = a b ( c ln 2 - 1 ) với a, b, c là các số nguyên. Tính tổng S = a 2 - a b + c
A. 6
B. 8
C. 7
D. 9
Thể tích phần vật thể giới hạn bởi hai mặt phẳng x = 0 và x = 3 biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x(0 ≤ x ≤ 3) là một hình chữ nhật có hai kích thước là x và 2 ( 9 - x 2 )
A. 6 3
B. 18
C. 2 3 3
D. 3 3 3
Cho (T) là vật thể nằm giữa hai mặt phẳng x = 0, x = 1. Tính thể tích V của (T) biết rằng khi cắt (T) bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x, 0 ≤ x ≤ 1 ,ta được thiết diện là tam giác đều có các cạnh bằng 1 + x
A. V = 3 2
B. V = 3 3 2 π
C. V = 3 3 2
D. V = 3 2 π