Cho tam giác DEF vuông tại E có ED <EF. Kẻ EH vuông góc với DF
a) So sánh DH và HF ?
b) Giả sử góc EDF = 60 độ . I là điểm thuộc đoạn thẳng DF sao cho ED=DI. Tam giác EDI là tam giác gì? Vì sao?
c) Vẽ trung tuyến FA. Trên tia đối của tia AF lấy điểm B sao cho AB =AF . Chứng minh BD vuông góc với DE .
d) Gọi G là trọng tâm của tam giác BDF . Biết GA = 3cm. Tính DE .
e) Gọi K là điểm nằm trên đoạn thẳng EA sao cho EK=\(\dfrac{2}{3}\) AE, FK cắt BE tại M , N là giao điểm của BF và DM . Chứng minh: BF =3 BN
a: ED<EF
=>HD<HF
b: Xét ΔDEI có DE=DI và góc D=60 độ
nên ΔDEI đều
c: Xét tứ giác FEBD có
A là trung điểm chung của FB và ED
=>FEBD là hbh
=>FE//BD
=>BD vuông góc DE
vẽ tam giác ABC. giả sử góc ABC=80 độ, góc ACB=40 độ. Hai tia phân giác kẻ từ đỉnh B và C cắt nhau tại I. Tính IBC+ICB và tính BIC
ai nhanh mik tick 3k
vì BI là tia phân giác của ^ABC => ^ ABI = ^ IBC= ^ ABC / 2 = 80 / 2 =40
=>^IBC=40
vì CI là tia phân giác của ^ACB => ^ACI = ^ ICB = ACB / 2 = 40 / 2 = 20
=>^ICB = 20
Ta có : ^BIC+^IBC+^ICB= 180 ( tổng ba góc của 1 tam giác )
=> ^BIC +40+20 =180
=>^BIC = 120
tam giác abc= tam giác def , trong đó bc=8 cm , góc b=70 độ , góc c= 40 độ .tình ef và góc d của tam giác def
Giải:
Ta có tam giác ABC= tam giác DEF
=>Góc D+Góc E+Góc F=Góc A+Góc B+Góc C=180độ (Tổng 3 góc của tam giác)
mà Góc B=Góc E(2 góc tương ứng)
Góc C=Góc F(2 góc tương ứng)
=>Góc D+Góc B+Góc C= 180độ
T/S: Góc D= 180-70-40(độ)
=70độ
=>Góc D=70độ
Ta thấy BC=EF(2 cạnh tương ứng)
=>BC=EF(=8)
=>EF=8cm
( * ) Vì \(\Delta\)ABC = \(\Delta\)DEF nên EF = BC = 8 cm
( * ) \(\Delta\)ABC có :
 + góc B + góc C = 180 ( tổng 3 góc tam giác )
\(\Rightarrow\)Â + 70 + 40 = 180
\(\Rightarrow\)Â = 180 - ( 70 + 40 ) = 70
Vì \(\Delta\)ABC = \(\Delta\)DEF nên góc D = Â = 70
các A vuông abc và def có góc a =góc d= 90 độ , ac=df. hãy bổ sung thêm một điều kiện bằng nhau ( về cạnh hay về góc) để Aabc=Adef
LƯU Ý: A là tam giác vì ko có hình tam giác nên fai dùng v đó
Cho tam giác ABC cân tại A có M là trung điểm của cạnh BC. a) Chứng minh AM vuông góc với BC b) Giả sử góc BAC = 40 độ . Tính góc B và góc C của tam giác ABC. c) Vẽ đường trung tuyến BN của tam giác ABC, trên tia BN lấy điểm D sao cho NB=ND. Chứng minh AB // CD và chứng minh tam giác ACD cân d) Gọi K là giao điểm của AM và BN. Chứng minh BK = 1/3 BD
a) Để chứng minh AM vuông góc với BC, ta sử dụng tính chất của tam giác cân. Vì tam giác ABC cân tại A, nên ta có MA = MC. Vì M là trung điểm của BC, nên ta có MB = MC. Từ đó, ta có MA = MB. Giả sử ta kẻ đường thẳng AM. Vì MA = MB, nên đường thẳng AM là đường trung tuyến của tam giác ABC. Theo tính chất của đường trung tuyến, ta có AM song song và bằng một nửa đoạn thẳng BC. Do đó, AM vuông góc với BC. b) Vì tam giác ABC cân tại A, nên ta có góc BAC = góc BCA. Vì góc BAC = 40 độ, nên góc BCA = 40 độ. Vì tam giác ABC cân tại A, nên tổng hai góc B và góc C là 180 độ - góc BAC = 180 độ - 40 độ = 140 độ. Vì tam giác ABC là tam giác cân, nên góc B = góc C = (180 độ - 140 độ)/2 = 20 độ. Vậy góc B của tam giác ABC là 20 độ và góc C cũng là 20 độ. c) Để chứng minh AB // CD, ta sử dụng tính chất của đường trung tuyến. Vì N là trung điểm của đoạn thẳng BC, nên BN song song và bằng một nửa đoạn thẳng AC. Từ đó, ta có: BN = 1/2 AC. Giả sử ta kẻ đường thẳng CD. Vì NB = ND, nên ta có: 1/2 AC = NB = ND. Do đó, ta có AB // CD. Để chứng minh tam giác ACD cân, ta sử dụng tính chất của đường trung tuyến. Vì D là điểm trên đường trung tuyến BN, nên ta có: ND = 1/2 NB. Từ đó, ta có: ND = 1/2 NB = 1/2 AC. Vì NB = ND và AD là đoạn thẳng chứa đường trung tuyến BN, nên ta có: AD song song và bằng một nửa đoạn thẳng AC. Do đó, tam giác ACD cân. d) Để chứng minh BK = 1/3 BD, ta sử dụng tính chất của điểm giao nhau của hai đường trung tuyến. Vì K là giao điểm của AM và BN, nên ta có: AK = 2/3 AM và BK = 2/3 BN. Vì MA = MB (vì tam giác ABC cân tại A và M là trung điểm của BC), nên AM là đường trung tuyến của tam giác ABC. Từ đó, ta có: AM = 1/2 BC. Vì NB = ND (vì trên tia BN ta lấy điểm D sao cho NB = ND), nên BN cũng là đường trung tuyến của tam giác ABC. Từ đó, ta có: BN = 1/2 AC. Do đó, ta có: AM = 1/2 BC = 1/2 AC. Vì BN = 1/2 AC, nên ta có: BK = 2/3 BN = 2/3 * 1/2 AC = 1/3 AC. Vì AC = BD (vì tam giác ACD cân và D là điểm trên đường trung tuyến BN), nên ta có: BK = 1/3 BD. Vậy ta đã chứng minh BK = 1/3 BD.
a: ΔABC cân tại A có AM là đường trung tuyến
nên AM vuông góc BC
b: ΔABC cân tại A
=>\(\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-40^0}{2}=70^0\)
c: Xét tứ giác ABCD có
N là trung điểm chung của AC và BD
=>ABCD là hình bình hành
=>AB//CD và AB=CD
=>CD=CA
=>ΔCAD cân tại C
cho tam giác DEF
có:DE=7cm
góc D bằng 40 độ
góc F bằng 58 độ
vẽ đường cao EI của tam giác đó(làm tròn đến chữ số thập phân thứ nhất)
Tính:EI
Tính:EF
Tính diện tích hình tam giác DEF.
cho tam giác ABC , vẽ tia phân giác của góc B và C cắt nhau tại I , vẽ tia phân giác góc ngoài tại đỉnh C cắt tia BI tại E
a) giả sử góc A = 80 độ . tính góc BIC và BEC
b) giả sử BIC = 135 độ . C/M tam giác ABC vuông
c) C/m 2BEC=BAC
Cho tam giác DEF có góc D =30 độ , góc F = 80 độ . Vẽ góc ngoài đỉnh E của tam giác DEF .Tính các góc trên hình
d=30 độ ;f=80độ ; DEF=70 độ ;góc ngoài đỉnh E = 110 độ
Vẽ tam giác ABC. Giả sử A = 40 độ, B = 70 độ. Chứng minh: B=C
Xét \(\Delta ABC\)có \(\widehat{A}=40^0\);\(\widehat{B}=70^0\)
Ta có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(t/c tổng 3 góc)
\(\Rightarrow40^0+70^0+\widehat{C}=180^0\)
\(\Rightarrow110^0+\widehat{C}=180^0\)
\(\Rightarrow\widehat{C}=180^0-110^0\)
\(\Rightarrow\widehat{C}=70^0=\widehat{B}\)
Vậy bài toán được chứng minh
Vẽ tam giác ABC có đường phân giác AD. Giả sử góc B = 70 độ ; góc C =50 độ . Tính góc BAD
BAC = 180 - B - C = 180 - 70 - 50 = 60
BAD = BAC : 2 = 30