tìm a,b để f(x) chia hết cho g(x). Biết:
f(x)=\(9x^3\)+(3a+4b)\(x^2\)- (5a-12b)x - 343; g(x)=\(\left(3x-7\right)^2\)
Cho 2 đa thức f(x)=\(x^4-9x^3+21x^2+x+a\) và g(x)=\(x^2-x-2\)
a)Cho a =-100,tìm dư của phép chia đa thức f(x) và g(x)
b)Tìm a để f(x) chia hết cho g(x)
Giải chi tiết hộ mình nhé thanks
Thực hiện phép chia đa thức \(f\left(x\right)\) cho \(g\left(x\right)\) ta được
\(x^4-9x^3+21x^2+x+a=\left(x^2-x-2\right)\left(x^2-8x+15\right)+a+30\)
Do đó dư của phép chia \(f\left(x\right)\) cho \(g\left(x\right)\) là \(a+30\).
a) Với \(a=-100\) dư của phép chia đa thức \(f\left(x\right)\) và \(g\left(x\right)\) là \(-100+30=-70\).
b) Để \(f\left(x\right)\) chia hết cho \(g\left(x\right)\) thì \(a+30=0\Leftrightarrow a=-30\).
tìm a,b để đa thức f(x) chia hết cho g(x)
F(x)=x^4-9x^3+21x^2+ax+b
G(x)=x^2-x-2
tìm a b c để F(x) chia hết cho G(x)
F(x) = x^5+x^4-9x^3+ax^2+bx+c
G(x)=x^3+3x^2-4x-12
Cho đa thức: f(x)= 3x4+9x3+7x+2 và g(x)=x+3
a) Thực hiện phép chia f(x) : g(x)
b) Tìm số nguyên âm x để f(x) chia hết cho g(x)
c) tìm m để đa thức k(x)= -x3-5x+2m chia hết cho g(x)
\(a,f\left(x\right):g\left(x\right)=\left(3x^4+9x^3+7x+2\right):\left(x+3\right)\\ =\left[3x^3\left(x+3\right)+7\left(x+3\right)-19\right]:\left(x+3\right)\\ =\left[\left(3x^3+7\right)\left(x+3\right)-19\right]:\left(x+3\right)\\ =3x^3+7.dư.19\)
\(c,\) Để \(k\left(x\right)⋮g\left(x\right)\Leftrightarrow-x^3-5x+2m=\left(x+3\right)\cdot a\left(x\right)\)
Thay \(x=-3\)
\(\Leftrightarrow-\left(-3\right)^3-5\left(-3\right)+2m=0\\ \Leftrightarrow27+15+2m=0\\ \Leftrightarrow2m=-42\\ \Leftrightarrow m=-21\)
tìm a,b để f(x) chia hết cho g(x)
f(x)=x mũ 4 - 9x mũ 3 + 21x mũ 2 + ax + b , g(x) = x mũ 2 - x -2
ai đó cíu vs
f(x) = x4 - 9x3 + 21x2 + ax + b
g(x) = x2 - x - 2
Ta có f(x) bậc 4 ; g(x) bậc 2
=> Thương là một đa thức bậc 2
Gọi đa thức thương đó là h(x) = x2 + cx + d
Ta có f(x) chia hết cho g(x)
<=> x4 - 9x3 + 21x2 + ax + b = ( x2 - x - 2 )( x2 + cx + d )
<=> x4 - 9x3 + 21x2 + ax + b = x4 + cx3 + dx2 - x3 - cx2 - dx - 2x2 - 2cx - 2d
<=> x4 - 9x3 + 21x2 + ax + b = x4 + ( c - 1 )x3 + ( d - c - 2 )x2 + ( -d - 2c )x - 2d
Đồng nhất hệ số ta được :
\(\hept{\begin{cases}c-1=-9\\d-c-2=21\\-d-2c=a\end{cases}};-2d=b\)
\(\Rightarrow\hept{\begin{cases}c=-8\\d=15\\a=1\end{cases}};b=-30\)
\(\Rightarrow\hept{\begin{cases}a=1\\b=-30\end{cases}}\)
Vậy ...
Tìm a , b để F(x) = \(x^3+x^2-x+a\)
Chia hết cho G(x) = \(\left(x+1\right)^2\)
b, Tìm a , b để F(x)= \(x^4-9x^3+21x^3+ax+b⋮9x=x^2-x-2\)
Cho hàm số:y=f(x)=(m-1)x
a) Tìm m biết:f(2)-f(-1)=6
b) Cho m=5 tìm x biết:f(3-2x)=20
tìm a b để đa thức f(x) chia hết cho đa thức g(x), với
a)f(x)=x^4-9x^3+21x^2+ax+b,g(x)=x^2-x-2
b)f(x)=x^4-x^3+6x^2-x+a,g(x)=x^2-x+5
c)f(x)=3x^3+10x^2-5+a,g(x)=3x+1
d)f(x)=x^3-3x+a,g(x)=(x-1)^2
x(y+3)-y=-2
2x+xy -3y =18
(x^2 -5 ) . (x^2-25 ) là số nguyên âm
/7/+3^2 - (-2)^3
-7.18.9+43.63+(-21).375
15 -(-15+34)
chứng tỏ rằng 3a +12b chia hết cho 3.với mọi số nguyên a,b
chứng tỏ biết 5a+5b chia hết cho 3.chứng tỏ rằng với mọi số nguyên a,b ta có 5a+2b chia hết cho -3