Cho hàm số f(x)= (x+2)/(x-1)
a. tìm giá trị của biến để f(x) có nghĩa
b. tính f(-3); f(7)
c. tìm x để f(x)=1/4
d. tìm xϵ Z để f(x) có giá trị nguyên
e. tìm x để f(x) >1
help me please :3
Cho hàm số f(x)=\(\frac{x+2}{x-1}\)
a) Tìm giá trị biến để cho vế phải có nghĩa.
b)tính f(7)
c) Tìm x để f(x)=\(\frac{1}{4}\)
d) Tìm x thuộc Z để f(x) có giá trị nguyên
a) x khác 1
b) f(7)=\(\frac{3}{2}\)
c)\(\frac{x+2}{x-1}\)=\(\frac{1}{4}\)<=> 4(x+2)=x-1<=>x=-3
d) f(x)=\(\frac{x+2}{x-1}\)=\(\frac{x-1+3}{x-1}\)= 1+\(\frac{3}{x-1}\)
f(x) có giá trị nguyên <=> x-1 thuộc Ư(3) <=> x-1 thuộc {+1;+3}
x-1 | -1 | 1 | 3 | -3 |
x | 0 | 2 | 4 | -2 |
e) f(x)>1 <=> 1+\(\frac{3}{x-1}\)> 1 <=> \(\frac{3}{x-1}\)> 0 <=> x-1 >0 <=> x>1
Cho hàm số y=f(x)=5 phần x-1 a)Tìm giá trị của x để hàm số có nghĩa b)Tính f(0),f(-1 phần 3) c)Tìm x biết y=-1,y=1,y=1 phần 5
1) Cho hàm số y = f(x) = 5/x-1
A. Tìm các giá trị của x sao cho vế phải của công thức có nghĩa
B. Tính f (-2) ; f(0) ; f(2) ; f(1/3)
C. Tìm các giá trị của x để y = -1; y=1; y= 1/5
hàm số y=f(x) được cho bởi công thức;y=5/x-1
a) tìm các giá trị của x sao cho vế phải của công thức có nghĩa.
b)tính f(-2);f(0);f(2);f(1/3).
c)tìm các giá trị của x để y=-1;y=1;y=1/5.
Cho hàm số y=f(x)=2x^2 -8
a) Tính f(–3) ; f(0) ; f(1) ; f(2) b) Tìm giá trị của x để f(x) có giá trị bằng 0.
a: f(-3)=10
f(0)=-8
f(1)=-6
f(2)=0
b: f(x)=0
=>(x-2)(x+2)=0
=>x=2 hoặc x=-2
Cho hàm số \(f\left(x\right)=\frac{x+2}{x-1}\)
a,Tìm giá trị của biến để cho vế phải có nghĩa.
b,Tìm x thuộc Z để hàm số \(f\left(x\right)\)có giá trị nguyên.
Cho hàm số y=f(x)=1/2|x|-3
a)Tính f(0); f(-1) ;f(2)
b)Tìm x để f(x)=0
c)Tìm x để f(x)=-2
d)Tìm x để hàm số có giá trị nhỏ nhất
Cho hàm số y=f(x)=1/2|x|-3
a)Tính f(0); f(-1) ;f(2)
b)Tìm x để f(x)=0
c)Tìm x để f(x)=-2
d)Tìm x để hàm số có giá trị nhỏ nhất
Cho hàm số y=f(x)=1/2|x|-3
a)Tính f(0); f(-1) ;f(2)
b)Tìm x để f(x)=0
c)Tìm x để f(x)=-2
d)Tìm x để hàm số có giá trị nhỏ nhất
Cho hàm số y = f(x) = | x - 2015 | + | x + 2016 |
a) Tính giá trị của hàm số f(x) khi |x| = 1/2
b) Tìm x để f(x) = 4041
c) Tìm x để giá trị hàm số f(x) đạt GTNN. Tính giá trị đó.
\(f\left(x\right)=\left|x-2015\right|+\left|x+2016\right|\)
a) Ta có: \(\left|x\right|=\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)
+) Với \(x=\frac{1}{2}\):
\(f\left(\frac{1}{2}\right)=\left|\frac{1}{2}-2015\right|+\left|\frac{1}{2}+2016\right|=2\)
+) Với \(x=-\frac{1}{2}\)
\(f\left(-\frac{1}{2}\right)=\left|-\frac{1}{2}-2015\right|+\left|-\frac{1}{2}+2016\right|=0\)
c) Áp dụng BĐT |x| + |y| \(\ge\)|x + y|, ta được:
\(f\left(x\right)=\left|x-2015\right|+\left|x+2016\right|=\left|2015-x\right|+\left|x+2016\right|\)
\(\ge\left|\left(2015-x\right)+\left(x+2016\right)\right|=\left|4031\right|=4031\)
(Dấu "="\(\Leftrightarrow\left(2015-x\right)\left(x+2016\right)\ge0\)
TH1: \(\hept{\begin{cases}2015-x\ge0\\x+2016\ge0\end{cases}}\Leftrightarrow-2016\le x\le2015\)
TH2: \(\hept{\begin{cases}2015-x\le0\\x+2016\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2015\\x\le-2016\end{cases}}\left(L\right)\))
Vậy \(f\left(x\right)_{min}=4031\Leftrightarrow-2016\le x\le2015\)