Cho biểu thức f(x)= ax + b. Tìm a , b biết f(-2)=5; f(3)=5
a)cho đa thức f(x)=ax+b.Tìm điều kiện của a và b để f(7)=f(2)+f(3)
b) Tìm nghiệm của P(x)=(x-2).(2x+5)
c) Tìm hệ số a của P(x)= x^4+ax^2-4.
Biết rằng, đa thức này có 1 nghiệm là -2
a) Ta có f(7) = a7 + b và f(2) + f(3) = (a2+ b) + (a3 + b) = 5a + 2b. Vậy để f(7) = f(2) + f(3), ta cần giải phương trình:
a7 + b = 5a + 2b
Simplifying, ta được: 2a = b.
Vậy điều kiện của a và b để f(7) = f(2) + f(3) là b = 2a.
b) Để tìm nghiệm của P(x), ta cần giải phương trình (x-2)(2x+5) = 0:
(x-2)(2x+5)= 0
→ X-2 = 0 hoặc 2x+5 = 0
→ x = 2 hoặc x = -5/2
Vậy nghiệm của P(x) là x = 2 hoặc x =-5/2.
c) Ta biết rằng đa thức P(x) có 1 nghiệm là -2, vậy ta có thể viết P(x)
dưới dạng:
P(x) = (x+2)(x^3 - 2x^2 + ax - 2)
Từ đó suy ra:
P(-2) = (-2+2)(8 - 4a - 2) = 0
⇔-8a= 16
⇔a = -2
Vậy hệ số a của P(x) là -2.
tại sao a7 + b = 5a + 2b lại bằng 2a = b vậy ạ
Tìm các hệ số a b của biểu thức : f(x) = ax+b biết f(1)= 1 , f ( 2)= 9
Tìm các hệ số a b của biểu thức : f(x) = ax+b biết f(1)= 1 , f ( 2)= 9
Cho đa thức f(x)=ax^2+bx+5. Tìm a,b biết nghiệm của đa thức f(x) là 1và-2
Vì nghiệm của f(x) là 1 nên
Thay 1 vào đa thức f(x) ta được
\(f\left(1\right)=a+b+5=1\Leftrightarrow a+b=-4\)(1)
Vì nghiệm của f(x) là -2 nên
Thay -2 vào đa thức f(x) ta được
\(f\left(-2\right)=4a-2b+5=-2\Leftrightarrow4a-2b=-7\)(2)
Từ (1) và (2) ta có hệ sau : \(\left\{{}\begin{matrix}a+b=-4\\4a-2b=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-4-b\left(1\right)\\4a-2b=-7\left(2\right)\end{matrix}\right.\)
Thay (1) vào (2) ta được : \(4\left(-4-b\right)-2b=-7\Leftrightarrow-16-4b-2b=-7\Leftrightarrow-6b=9\Leftrightarrow b=-\dfrac{3}{2}\)
\(\Rightarrow a=-4+\dfrac{3}{2}=\dfrac{-5}{2}\)
Vậy a = -5/2 ; b = -3/2
cho đa thức f(x)=x^2+ax+b biết f(a) = f(b) = 0 tìm a,b
Ta có : \(\left\{{}\begin{matrix}f\left(a\right)=2a^2+b=0\\f\left(b\right)=b^2+ab+b=0\\2a^2=b^2+ab\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2a^2+b=0\\a+b=-1\\a^2-b^2=\left(a+b\right)\left(a-b\right)=ab-a^2=a\left(b-a\right)\end{matrix}\right.\)
\(\Rightarrow\left(a+b\right)\left(a-b\right)+a\left(a-b\right)=\left(a-b\right)\left(2a+b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=b\\a+b=-a=-1\end{matrix}\right.\)
TH1 : a = b .
\(\Rightarrow a=b=-\dfrac{1}{2}\)
TH2 : a = 1
\(\Rightarrow b=-2\)
: Cho đa thức f(x) = ax + b a) Biết f(0) = 3; f(2) = 7, tìm a, b và xác định f(x). b) Biết f(2) = 8; f(– 2) = 12, tìm a, b và xác định f(x)
1/Tìm x, biết
a)2x^2+3x=5
b)7x-5x^2-3=0
2/Tìm giá trị nhỏ nhất hoặc lớn nhất của các biểu thức sau:
a) A=2x^2-8x-10
b)9x=3x^2
3/Cho đa thức f(x)=x^3-5x^2+ax+b. Tìm a, b để f(x) chia hết cho g(x)=x^2-1
My Nguyễn ơi,bạn truy cập vào đường link này để tìm câu hỏi tương tự của câu a/Bài 1 nhé
https://vn.answers.yahoo.com/question/index?qid=20110206184834AAokV5m&sort=N
Hahahahahahhahagagagahahahahahahahahayahahahahahahaha
: Cho đa thức f(x) = ax + b a) Biết f(0) = 3; f(2) = 7, tìm a, b và xác định f(x). b) Biết f(2) = 8; f(– 2) = 12, tìm a, b và xác định f(x) Giiusp mình với ạ
a)tìm đa thức f(x)=x^2+ax+b, biết khi chia f(x) cho x+1 thì dư là 6 còn khi chia cho x-2 thì dư là 3
b)tìm giá trị nhỏ nhất của biểu thức A=x.(x-3)
c) tìm giá trị nhỏ nhất của biểu thức A=x.(2x-3)
Câu 1:Cho đa thức: Q=3x-0,5x^6-4x^5-x^3+ax^6+bx^5+6x^4+c-5
Tìm a, b, c biết Q(x) có bậc là 5,hệ số cao nhất là 3 và hệ số tự do là -2
Câu 2: Cho đa thức f(x) =ax^2+bx+c. Tìm a,b, c biết:
a) f(0)=2, f(1)=0 và f(-1)=6
b) Tính f(3)-2f(2) biết: f(1)=7, b và c là 2 số đối nhau.
Cần gấppppppp nheeeeee!!!!!! :3