CMR:ko tồn tại 2 số dương a & b khác nhau thõa mản đẳg thức: \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
CMR:ko tồn tại số nguyên a thỏa mãn ( 2017 mũ 2017+1) chia hết a3+11a
Cho các số thực a,b,c thỏa mãn \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\). Chứng tỏ rằng trong 3 số a,b,c tồn tại a,b,c tồn tại 1 số không âm, tồn tại 1 số không dương.
Gs a+b+c>1/a+1/b+1/c nhưng không t/m một và chỉ một trong 3 số a,b,c lớn hơn 1 TH1:Cả 3 số a,b,c đều lớn hơn 1 hoặc đều nhỏ hơn 1 suy ra mâu thẫn( vì abc=1) TH2 có 2 số lớn hơn 1 Gs a>1,b>1,c<1 suy ra a-1>0,b-1>0,c-1<0 suy ra (a-1)(b-1)(c-1)<0 suy ra abc+a+b+c-(ab+bc+ca)-1<0 suy ra a+b+c<ab+bc+ca suy ra a+b+c<abc/c+abc/a+abc/b suy ra a+b+c<1/a+1/b+1/c(mâu thuẫn với giả thuyết nên điều giả sử sai) suy ra đpcm
Bài 8. Cho số nguyên dương n. Tồn tại hay không số nguyên dương d thỏa mãn: d là ước của 3n^2 và n^2 +d là số chính phương. Bài 9. Chứng minh rằng không tồn tại hai số nguyên dương x, y thỏa mãn x^2 +y+1 và y^2 +4x+3 đều là số chính phương.
Ai đó giúp mình đi mòaa🤤🤤🤤
Tìm số nguyên dương a sao cho tồn tại số nguyên dương n thỏa mãn a chia hết cho cả hai số n2 + 1 và (n+1)2 +1
tồn tại ko các số nguyên dương a,b,c thoả a(a+1)...(a+7)+1.2.3.4.5.6.7=b^2+c^2
a(a+1)(a+2)...(a+7) chia hết cho 7 nhưng không chia hết cho 49 ( do chỉ có 1 số chia hết cho 7)
1.2.3.4.5.6.7 chia hết cho 7. DO vậy VT chia hết cho 7 nhưng ko chia hết cho 49.
VP=b^2+c^2 chia hết cho 7 mà 7 là số nguyên tố có dạng 4k+3 nên b,c đều chia hết cho 7 (mệnh đề này nếu chưa biết có thể tìm trên mạng)
=>b^2+c^2 chia hết cho 49. KẾt hợp với trên => loại
Cho 51 số nguyên dương phân biệt không vượt quá 100. Chứng minh tồn tại 2 số mà tổng của chúng =101.Và tồn tại 2 số có hiệu là 50
có tồn tại 2 số dương a,b khác nhau để 1/a-1/b=1/a-b không ?Vì sao
\(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{a-b}\)
\(\Rightarrow\dfrac{b\left(a-b\right)}{ab\left(a-b\right)}+\dfrac{a\left(a-b\right)}{ab\left(a-b\right)}=\dfrac{ab}{ab\left(a-b\right)}\left(a,b\ne0;a\ne b;a,b>0\right)\)
\(\Rightarrow\left(a-b\right)\left(b-a\right)=ab\)
\(\Rightarrow-\left(a-b\right)\left(a-b\right)=ab\)
\(\Rightarrow-\left(a-b\right)^2=ab\left(1\right)\)
mà \(\left\{{}\begin{matrix}-\left(a-b\right)^2< 0\\ab>0\end{matrix}\right.\)
\(\Rightarrow\left(1\right)\) vô lý
⇒ không có 2 số a≠b; a,b>0 thỏa đề bài
Bài 1 : Chứng minh :
Nếu x là một số hữu tỉ thì tồn tại 1 số nguyên dương a sao cho a.x là 1 số nguyên dương . Nếu x là một số sao cho tồn tại 1 số nguyên dương a sao cho a.x là 1 số nguyên thì x là 1 số hữu tỉCó tồn tại 2 số dương avaf b sao cho 1/a-1/b=1/a-b Không?